These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7295689)

  • 1. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain.
    Frankfater A; Kuppy T
    Biochemistry; 1981 Sep; 20(19):5517-24. PubMed ID: 7295689
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of papain with derivatives of phenylalanylglycinal.
    Mattis JA; Henes JB; Fruton JS
    J Biol Chem; 1977 Oct; 252(19):6776-82. PubMed ID: 893442
    [No Abstract]   [Full Text] [Related]  

  • 3. A kinetic analysis of the enhanced catalytic efficiency of papain modified by 2-hydroxy-5-nitrobenzylation.
    Mole JE; Horton HR
    Biochemistry; 1973 Dec; 12(26):5285-9. PubMed ID: 4760493
    [No Abstract]   [Full Text] [Related]  

  • 4. The pKa value of the active site histidine in photo-oxidised papain.
    Clark PE; Lowe G
    FEBS Lett; 1976 Jan; 61(1):25-7. PubMed ID: 1289
    [No Abstract]   [Full Text] [Related]  

  • 5. Papain labelled with fluorescent thiol-specific reagents as a probe for characterization of interactions between cysteine proteinases and their protein inhibitors by competitive titrations.
    Lindahl P; Raub-Segall E; Olson ST; Björk I
    Biochem J; 1991 Jun; 276 ( Pt 2)(Pt 2):387-94. PubMed ID: 2049069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiometric determination of ionizations at the active site of papain.
    Lewis SD; Johnson FA; Shafer JA
    Biochemistry; 1976 Nov; 15(23):5009-17. PubMed ID: 10964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of papain with derivatives of phenylalanylglycinal: fluorescence studies.
    Henes JB; Mattis JA; Fruton JS
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1131-4. PubMed ID: 286298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic resonance spectroscopy.
    Bendall MR; Cartwright IL; Clark PI; Lowe G; Nurse D
    Eur J Biochem; 1977 Sep; 79(1):201-9. PubMed ID: 913417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in papain during catalysis and ligand binding.
    Fink AL; Gwyn C
    Biochemistry; 1974 Mar; 13(6):1190-5. PubMed ID: 4814720
    [No Abstract]   [Full Text] [Related]  

  • 10. Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy.
    Johnson FA; Lewis SD; Shafer JA
    Biochemistry; 1981 Jan; 20(1):52-8. PubMed ID: 7470480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes.
    Mackenzie NE; Grant SK; Scott AI; Malthouse JP
    Biochemistry; 1986 Apr; 25(8):2293-8. PubMed ID: 3707946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular inhibition by enzyme of site-specific modification reactions can mask pKa values characteristic of the reaction pathway: do the side chains of aspartic acid-158 and lysine-156 of papain form an ion-pair? [proceedings].
    Malthouse JP; Brocklehurst K
    Biochem Soc Trans; 1978; 6(1):250-2. PubMed ID: 25211
    [No Abstract]   [Full Text] [Related]  

  • 13. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.
    Ping ZA; Butterfiel DA
    Biophys J; 1991 Sep; 60(3):623-8. PubMed ID: 1657229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the action of papain on fluorescent peptide substrates.
    Mattis JA; Fruton JS
    Biochemistry; 1976 May; 15(10):2191-4. PubMed ID: 1276132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate constants of individual steps in papain-catalysed reactions.
    Yuthavong Y; Suttimool W
    Biochim Biophys Acta; 1978 Mar; 523(1):198-206. PubMed ID: 629988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionization of a nitrophenol-containing reporter group at the active site of papain.
    Lewis SD; Shafer JA
    Biochemistry; 1974 Feb; 13(4):690-8. PubMed ID: 4811062
    [No Abstract]   [Full Text] [Related]  

  • 17. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe.
    Brocklehurst K; Kowlessur D; Patel G; Templeton W; Quigley K; Thomas EW; Wharton CW; Willenbrock F; Szawelski RJ
    Biochem J; 1988 Mar; 250(3):761-72. PubMed ID: 2839145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanuration of papain. Activity and fluorescence of the products.
    Sluyterman LA; Wijdenes J
    Biochim Biophys Acta; 1972 Apr; 263(2):329-38. PubMed ID: 5031161
    [No Abstract]   [Full Text] [Related]  

  • 19. A dityrosine-based substrate for a protease assay: application for the selective assessment of papain and chymopapain activity.
    Kim CJ; Lee DI; Lee CH; Ahn IS
    Anal Chim Acta; 2012 Apr; 723():101-7. PubMed ID: 22444580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of proflavine with 2-hydroxy-5-nitrobenzylated papain.
    Kaminski EA; Horton HR
    Biochem Biophys Res Commun; 1982 Apr; 105(3):1135-41. PubMed ID: 7092894
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.