These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7295690)
1. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site. Holzman TF; Baldwin TO Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690 [TBL] [Abstract][Full Text] [Related]
2. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue. Holzman TF; Baldwin TO Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889 [TBL] [Abstract][Full Text] [Related]
3. Interaction of bacterial luciferase with aldehyde substrates and inhibitors. Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. Lei B; Cho KW; Tu SC J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897 [TBL] [Abstract][Full Text] [Related]
5. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299 [TBL] [Abstract][Full Text] [Related]
6. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters. Kurfürst M; Macheroux P; Ghisla S; Hastings JW Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296 [TBL] [Abstract][Full Text] [Related]
7. Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site. Chen LH; Baldwin TO Biochemistry; 1989 Mar; 28(6):2684-9. PubMed ID: 2730882 [TBL] [Abstract][Full Text] [Related]
8. Affinity labeling of the aldehyde site of bacterial luciferase. Fried A; Tu SC J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953 [TBL] [Abstract][Full Text] [Related]
9. Activity and stability of the luciferase--flavin intermediate. Becvar JE; Tu SC; Hastings JW Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
11. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. Jawanda N; Ahmed K; Tu SC Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321 [TBL] [Abstract][Full Text] [Related]
13. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
14. Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical. Kurfürst M; Ghisla S; Presswood R; Hastings JW Eur J Biochem; 1982 Apr; 123(2):355-61. PubMed ID: 6978813 [TBL] [Abstract][Full Text] [Related]
15. Stopped-flow kinetic analysis of the bacterial luciferase reaction. Abu-Soud H; Mullins LS; Baldwin TO; Raushel FM Biochemistry; 1992 Apr; 31(15):3807-13. PubMed ID: 1567836 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the aldehyde binding site of bacterial luciferase by photoaffinity labeling. Tu SC; Henkin J Biochemistry; 1983 Jan; 22(2):519-23. PubMed ID: 6824641 [TBL] [Abstract][Full Text] [Related]
17. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase. Jockers R; Ziegler T; Schmid RD J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412 [TBL] [Abstract][Full Text] [Related]
18. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate. Li H; Ortego BC; Maillard KI; Willson RC; Tu SC Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361 [TBL] [Abstract][Full Text] [Related]
19. Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. AbouKhair NK; Ziegler MM; Baldwin TO Biochemistry; 1985 Jul; 24(15):3942-7. PubMed ID: 4052376 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol. Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]