BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 7295939)

  • 1. [Maintenance of myocardial contractivity in dogs following cardioplegia using blood].
    Portnoĭ VF; Liakhovich IuS; Mukumov MR
    Biull Eksp Biol Med; 1981 Jul; 92(7):28-31. PubMed ID: 7295939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The additive protective effects of hypothermia and chemical cardioplegia during ischemic cardiac arrest in the dog.
    Rosenfeldt FL; Hearse DJ; Canković-Darracott S; Braimbridge MV
    J Thorac Cardiovasc Surg; 1980 Jan; 79(1):29-38. PubMed ID: 7350386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does lower systemic temperature enhance cardioplegic myocardial protection?
    Grover FL; Fewel JG; Ghidoni JJ; Trinkle JK
    J Thorac Cardiovasc Surg; 1981 Jan; 81(1):11-20. PubMed ID: 7453211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normothermic cardioplegia prevents intracellular calcium accumulation during cardioplegic arrest and reperfusion.
    Liu X; Engelman RM; Rousou JA; Flack JE; Deaton DW; Das DK
    Circulation; 1994 Nov; 90(5 Pt 2):II316-20. PubMed ID: 7955273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature of cardioplegic solution.
    Behrendt DM; Jochim KE
    J Thorac Cardiovasc Surg; 1978 Sep; 76(3):353-7. PubMed ID: 682667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channel activation before cardioplegia. Effects on ventricular and myocyte function.
    Dorman BH; Hebbar L; Zellner JL; New RB; Houck WV; Acsell J; Nettles C; Hendrick JW; Sampson AP; Mukherjee R; Spinale FG
    Circulation; 1998 Nov; 98(19 Suppl):II176-83. PubMed ID: 9852901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia.
    Pearl JM; Laks H; Drinkwater DC; Meneshian A; Sun B; Gates RN; Chang P
    J Thorac Cardiovasc Surg; 1993 Feb; 105(2):201-6. PubMed ID: 8429645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of intermittent blood cardioplegia over intermittent ischemia during prolonged hypothermic aortic clamping.
    Follette DM; Steed DL; Foglia R; Fey K; Buckberg GD
    Circulation; 1978 Sep; 58(3 Pt 2):I200-9. PubMed ID: 14740703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantages of hypothermic potassium cardioplegia and superiority of continuous versus intermittent aortic cross-clamping.
    Roberts AJ; Abel RM; Alonso DR; Subramanian VA; Paul JS; Gay WA
    J Thorac Cardiovasc Surg; 1980 Jan; 79(1):44-58. PubMed ID: 7350388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation.
    Rudd DM; Dobson GP
    J Thorac Cardiovasc Surg; 2009 Jan; 137(1):198-207. PubMed ID: 19154926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous addition of adenosine with a micropump system improves warm whole blood cardioplegia.
    Agnihotri AK; Recanati MA; White JK; Titus J; Fischer JI; Schon J; Torchiana DF
    Heart Surg Forum; 2003; 6(4):264-72. PubMed ID: 12928212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized arrest with warm or cold adenosine/lidocaine blood cardioplegia is equivalent to hypothermic potassium blood cardioplegia.
    Corvera JS; Kin H; Dobson GP; Kerendi F; Halkos ME; Katzmark S; Payne CS; Zhao ZQ; Guyton RA; Vinten-Johansen J
    J Thorac Cardiovasc Surg; 2005 Mar; 129(3):599-606. PubMed ID: 15746744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of pH adjustment in deep hypothermia and circulatory arrest (author's transl)].
    Becker H; Vinten-Johansen J; Maloney JV; Buckberg GD
    Chir Forum Exp Klin Forsch; 1980; ():291-4. PubMed ID: 7389468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left ventricular function after preserving the heart for 2 hours at 15 degrees C.
    Swanson DK; Dufek JH; Kahn DR
    J Thorac Cardiovasc Surg; 1980 May; 79(5):755-60. PubMed ID: 7366242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase C isoform-dependent myocardial protection by ischemic preconditioning and potassium cardioplegia.
    Lu K; Otani H; Yamamura T; Nakao Y; Hattori R; Ninomiya H; Osako M; Imamura H
    J Thorac Cardiovasc Surg; 2001 Jan; 121(1):137-48. PubMed ID: 11135170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial protection: efficacy of a novel magnesium-based cardioplegia (RS-C) compared to St Thomas' Hospital cardioplegic solution.
    Maruyama Y; Chambers DJ
    Interact Cardiovasc Thorac Surg; 2008 Oct; 7(5):745-9. PubMed ID: 18550603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of amino acids and enhancement cardioplegia in routine myocardial protection. Experimental results.
    Crooke GA; Harris LJ; Grossi EA; Baumann FG; Esposito R; Spencer FC; Colvin SB; Galloway AC
    J Thorac Cardiovasc Surg; 1993 Sep; 106(3):497-501. PubMed ID: 8361193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channel opener-augmented cardioplegia: protection of myocyte contractility with chronic left ventricular dysfunction.
    Dorman BH; Hebbar L; Clair MJ; Hinton RB; Roy RC; Spinale FG
    Circulation; 1997 Nov; 96(9 Suppl):II-253-9. PubMed ID: 9386107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of supplemental L-arginine during warm blood cardioplegia.
    Hayashida N; Tomoeda H; Oda T; Tayama E; Chihara S; Akasu K; Kosuga T; Kai E; Aoyagi S
    Ann Thorac Cardiovasc Surg; 2000 Feb; 6(1):27-33. PubMed ID: 10748356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Myocardial contractility in different methods of Cardioplegia. An experimental study (author's transl)].
    Hügel W; Uekermann U; Franz C; Isselhard W; Schorn B; Hirche H; Lübbing H; Dalichau H
    Thoraxchir Vask Chir; 1978 Jun; 26(3):201-4. PubMed ID: 675658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.