These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7296310)

  • 1. Hippocampal deafferentation and deefferentation and gastric pathology in rats.
    Henke PG; Savoie RJ; Callahan BM
    Brain Res Bull; 1981 Oct; 7(4):395-8. PubMed ID: 7296310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation.
    Gage FH; Björklund A; Stenevi U; Dunnett SB
    Brain Res; 1983 May; 268(1):39-47. PubMed ID: 6860965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fimbria-fornix transection and ganglioside treatments on histochemical staining for glucose-6-phosphate dehydrogenase in the lateral septum.
    Fass B; Stein DG
    Synapse; 1987; 1(1):70-81. PubMed ID: 3505365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation.
    Björklund A; Stenevi U
    Brain Res; 1981 Dec; 229(2):403-28. PubMed ID: 7306819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of unilateral destruction of fimbria-fornix and supracallosal pathways in the rat.
    Buzsáki G; Ryan JP; Isaacson RL
    Behav Neural Biol; 1989 Mar; 51(2):278-88. PubMed ID: 2930438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
    Moran TH; Baldessarini AR; Salorio CF; Lowery T; Schwartz GJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1245-51. PubMed ID: 9140026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesions of the hippocampal efferent pathway (fimbria-fornix) do not alter sensitivity of adrenocorticotropin to feedback inhibition by corticosterone in rats.
    Bradbury MJ; Strack AM; Dallman MF
    Neuroendocrinology; 1993 Oct; 58(4):396-407. PubMed ID: 8284025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of afferent and efferent projections in the hypothalamic subiculum-supraoptic region system in the rat hypothalamus.
    Lutsik EA
    Neurosci Behav Physiol; 1998; 28(1):45-7. PubMed ID: 9513977
    [No Abstract]   [Full Text] [Related]  

  • 10. Cholecystokinin in hippocampal pathways.
    Greenwood RS; Godar SE; Reaves TA; Hayward JN
    J Comp Neurol; 1981 Dec; 203(3):335-50. PubMed ID: 7320233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The connections of presubiculum and parasubiculum in the rat.
    van Groen T; Wyss JM
    Brain Res; 1990 Jun; 518(1-2):227-43. PubMed ID: 1697208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic influence of the hippocampus on hypothalamus, preoptic and basal forebrain is exerted through amygdalofugal pathways.
    Poletti CE; Kliot M; Boytim M
    Neurosci Lett; 1984 Mar; 45(2):211-6. PubMed ID: 6728314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the effects of fimbria-fornix, hippocampal, or entorhinal cortex lesions on spatial reference and working memory in rats: short versus long postsurgical recovery period.
    Galani R; Obis S; Coutureau E; Jarrard L; Cassel JC
    Neurobiol Learn Mem; 2002 Jan; 77(1):1-16. PubMed ID: 11749082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic comparison of the effects of hippocampal and fornix-fimbria lesions on acquisition of three configural discriminations.
    McDonald RJ; Murphy RA; Guarraci FA; Gortler JR; White NM; Baker AG
    Hippocampus; 1997; 7(4):371-88. PubMed ID: 9287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced spatial discrimination learning in rats following 5,7-DHT-induced serotonergic deafferentation of the hippocampus.
    Altman HJ; Normile HJ; Galloway MP; Ramirez A; Azmitia EC
    Brain Res; 1990 Jun; 518(1-2):61-6. PubMed ID: 1697213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat.
    Meyer DK; Oertel WH; Brownstein MJ
    Brain Res; 1980 Oct; 200(1):165-8. PubMed ID: 6998543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular pharmacological approach to drug actions on the afferent and efferent fibres of the vagal nerve involved in gastric mucosal protection in rats.
    Mózsik G; Dömötör A; Abdel-Salam OM
    Inflammopharmacology; 2006 Dec; 14(5-6):243-9. PubMed ID: 17139445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The organization of the afferent and efferent projections in the system of the subiculum-supraoptic area of the hypothalamus in rats].
    Lutsik EA
    Fiziol Zh Im I M Sechenova; 1996 Apr; 82(4):123-6. PubMed ID: 8963328
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of dCA3 efferents via the fimbria in the acquisition of a delay nonmatch to place task.
    Hunsaker MR; Allan KD; Kesner RP
    Hippocampus; 2007; 17(6):494-502. PubMed ID: 17455333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galanin-like immunoreactivity in hippocampal afferents in the rat, with special reference to cholinergic and noradrenergic inputs.
    Melander T; Staines WA; Rökaeus A
    Neuroscience; 1986 Sep; 19(1):223-40. PubMed ID: 2431348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.