These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7296413)

  • 1. Stable isotope fractionation by Clostridium pasteurianum. 4. Sulfur isotope fractionation during enzymatic S3O6(2-), S2O3(2-), and SO3(2-) reductions.
    Harrison GI; Laishley EJ; Krouse HR
    Can J Microbiol; 1981 Aug; 27(8):824-34. PubMed ID: 7296413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable isotope fractionation by Clostridium pasteurianum. 1. 34S/32S: inverse isotope effects during SO4-2- and SO3-2- reduction.
    McCready RG; Laishley EJ; Krouse HR
    Can J Microbiol; 1975 Mar; 21(3):235-44. PubMed ID: 234781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO32- and SO42- reduction.
    Laishley EJ; Krouse HR
    Can J Microbiol; 1978 Jun; 24(6):716-24. PubMed ID: 667738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum.
    Harrison G; Curle C; Laishley EJ
    Arch Microbiol; 1984 May; 138(1):72-8. PubMed ID: 6742957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur isotope fractionation during SO3(2-) reduction by different clostridial species.
    Laishley EJ; Tyler MG; Krouse HR
    Can J Microbiol; 1984 Jun; 30(6):841-4. PubMed ID: 6091857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiosulfate formation and associated isotope effects during sulfite reduction by Clostridium pasteurianum.
    Chambers LA; Trudinger PA
    Can J Microbiol; 1979 Jun; 25(6):719-21. PubMed ID: 476549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of stable sulfur isotope labelling to elucidate sulfur metabolism by Clostridium pasteurianum.
    McCready RG; Laishley EJ; Krouse HR
    Arch Microbiol; 1976 Sep; 109(3):315-7. PubMed ID: 985000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotope fractionation by Clostridium pasteurianum. 3. Effect of SeO32- on the physiology and associated sulfur isotope fractionation during SO32- and SO42- reductions.
    Harrison GI; Laishley EJ; Krouse HR
    Can J Microbiol; 1980 Aug; 26(8):952-8. PubMed ID: 7459717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur isotope fractionation by Proteus vulgaris and Salmonella heidelberg during the reduction of thiosulfate.
    McCready RG; Grinenko VA; Krouse HR
    Can J Microbiol; 1980 Oct; 26(10):1173-7. PubMed ID: 7006763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur isotope fractionation by Salmonella heidelberg: inverse isotope effects during growth on high concentrations of Na2SO3.
    McCready RG; Krouse HR
    Can J Microbiol; 1979 Dec; 25(12):1387-93. PubMed ID: 534960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
    Einsiedl F
    Environ Sci Technol; 2009 Jan; 43(1):82-7. PubMed ID: 19209588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic redox chemistry: a proposed reaction pathway for the six-electron reduction of SO3(2-) to S2- by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough).
    Tan J; Cowan JA
    Biochemistry; 1991 Sep; 30(36):8910-7. PubMed ID: 1888748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.
    Brunner B; Einsiedl F; Arnold GL; Müller I; Templer S; Bernasconi SM
    Isotopes Environ Health Stud; 2012; 48(1):33-54. PubMed ID: 22128782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression.
    Leavitt WD; Venceslau SS; Pereira IA; Johnston DT; Bradley AS
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27702753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ferredoxin-linked sulfite reductase from Clostridium pasteurianum.
    Laishley EJ; Lin PM; Peck HD
    Can J Microbiol; 1971 Jul; 17(7):889-95. PubMed ID: 4398462
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of complexes between Escherichia coli sulfite reductase hemoprotein subunit and its substrates sulfite and nitrite.
    Janick PA; Rueger DC; Krueger RJ; Barber MJ; Siegel LM
    Biochemistry; 1983 Jan; 22(2):396-408. PubMed ID: 6297547
    [No Abstract]   [Full Text] [Related]  

  • 18. Revisiting the dissimilatory sulfate reduction pathway.
    Bradley AS; Leavitt WD; Johnston DT
    Geobiology; 2011 Sep; 9(5):446-57. PubMed ID: 21884365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymology and molecular biology of prokaryotic sulfite oxidation.
    Kappler U; Dahl C
    FEMS Microbiol Lett; 2001 Sep; 203(1):1-9. PubMed ID: 11557133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of molecular sulfur as an agent oxidizing H2 by a facultative anaerobic Pseudomonas strain].
    Balashova VV
    Mikrobiologiia; 1985; 54(2):324-6. PubMed ID: 4010557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.