These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7296924)

  • 1. The effect of haloperidol feeding on dopamine receptor number in ten mouse strains.
    Belmaker RH; Bannet J; Brecher-Fride E; Yanai J; Ebstein RP
    Clin Genet; 1981 May; 19(5):353-6. PubMed ID: 7296924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual differences in the response of dopamine receptor number to chronic haloperidol treatment.
    Bannet J; Belmaker RH; Ebstein RP
    Biol Psychiatry; 1981 Nov; 16(11):1059-65. PubMed ID: 7349620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium does not interact with haloperidol in the dopaminergic pathways of the rat brain.
    Reches A; Jackson-Lewis V; Fahn S
    Psychopharmacology (Berl); 1984; 82(4):330-4. PubMed ID: 6427824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of drug holidays in an animal model of tardive dyskinesia.
    Bannet J; Belmaker RH; Ebstein RP
    Psychopharmacology (Berl); 1980; 69(2):223-4. PubMed ID: 6779315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine binding following prolonged haloperidol pretreatment.
    Hitri A; Weiner WJ; Borison RL; Diamond BI; Nausieda PA; Klawans HL
    Ann Neurol; 1978 Feb; 3(2):134-40. PubMed ID: 655662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permanent haloperidol-induced dopamine receptor up-regulation in the ovariectomized rat.
    Fields JZ; Gordon JH
    Brain Res Bull; 1991 Apr; 26(4):549-52. PubMed ID: 1831063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors contributing to the up regulation of dopaminergic receptors by chronic haloperidol.
    Schweitzer JW; Schwartz R; Friedhoff AJ
    Res Commun Chem Pathol Pharmacol; 1982 Oct; 38(1):21-30. PubMed ID: 7146618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen in experimental tardive dyskinesia.
    Gordon JH; Borison RL; Diamond BI
    Neurology; 1980 May; 30(5):551-4. PubMed ID: 7189262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment.
    Waddington JL; Cross AJ; Gamble SJ; Bourne RC
    Science; 1983 Apr; 220(4596):530-2. PubMed ID: 6132447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One year of continuous treatment with haloperidol or clozapine fails to induce a hypersensitive response of caudate putamen neurons to dopamine D1 and D2 receptor agonists.
    Jiang LH; Kasser RJ; Altar CA; Wang RY
    J Pharmacol Exp Ther; 1990 Jun; 253(3):1198-205. PubMed ID: 1972751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on the caudate spindle in rats of dopamine microinjected into the caudate nucleus.
    Okuyama S; Hashimoto S; Aihara H
    Neurosci Lett; 1985 Aug; 59(1):27-32. PubMed ID: 4047500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MK-771 antagonizes the enhanced response to apomorphine in rats treated chronically with haloperidol - implications for tardive dyskinesia.
    Yarbrough GG; Faison EP; Antolik EK
    Neurosci Lett; 1982 Dec; 34(3):321-3. PubMed ID: 6819493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioural effects of dopamine D-1 and D-2 receptor agonists in monkeys previously treated with haloperidol.
    Lublin H; Gerlach J
    Eur J Pharmacol; 1988 Aug; 153(2-3):239-45. PubMed ID: 3263277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molindone compared to haloperidol in a guinea-pig model of tardive dyskinesia.
    Koller W; Curtin J; Fields J
    Neuropharmacology; 1984 Oct; 23(10):1191-4. PubMed ID: 6240609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline chloride in animal models of tardive dyskinesia.
    Davis KL; Hollister LE; Vento AL; Simonton S
    Life Sci; 1978 May; 22(19):1699-707. PubMed ID: 566830
    [No Abstract]   [Full Text] [Related]  

  • 16. Chronic neuroleptic treatment in rats produces persisting changes in GABAA and dopamine D-2, but not dopamine D-1 receptors.
    See RE; Aravagiri M; Ellison GD
    Life Sci; 1989; 44(3):229-36. PubMed ID: 2536879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Neuroleptic-induced dopaminergic supersensitivity following intermittent and continuous haloperidol administrations in rats].
    Sato M; Kashihara K; Harada T
    Seishin Shinkeigaku Zasshi; 1984; 86(10):841-4. PubMed ID: 6522512
    [No Abstract]   [Full Text] [Related]  

  • 18. Molindone and haloperidol in tardive dyskinesia.
    Glazer WM; Hafez HM; Benarroche CL
    J Clin Psychiatry; 1985 Aug; 46(8 Pt 2):4-7. PubMed ID: 2862139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic nicotine use blocks haloperidol-induced increase in striatal D2-dopamine receptor density.
    Prasad C; Spahn SA; Ikegami H
    Biochem Biophys Res Commun; 1989 Feb; 159(1):48-52. PubMed ID: 2522303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.