These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7298445)

  • 1. Steady pressure-flow relationship of a model of the canine bronchial tree.
    Reynolds DB; Lee JS
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1072-9. PubMed ID: 7298445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady expiratory flow-pressure relationship in a model of the human bronchial tree.
    Reynolds DB
    J Biomech Eng; 1982 May; 104(2):153-8. PubMed ID: 7078131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady and unsteady pressure-flow relationships in central airways.
    Isabey D; Chang HK
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1338-48. PubMed ID: 7298472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ventilation technique and airway diameter on bronchial lumen to pulmonary artery diameter ratios in clinically normal beagle dogs.
    Makara M; Dennler M; Schnyder M; Bektas R; Kircher P; Hall E; Glaus T
    Vet Radiol Ultrasound; 2013; 54(6):605-9. PubMed ID: 23815744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airflow-generated sound in a hollow canine airway cast.
    Kraman SS; Wang PM
    Chest; 1990 Feb; 97(2):461-6. PubMed ID: 2298072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.
    Hentschel R; Buntzel J; Guttmann J; Schumann S
    Physiol Meas; 2011 Sep; 32(9):1439-51. PubMed ID: 21799238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Double-Lumen Tubes Determine Bronchial Airway Pressure.
    Spaeth J; Hojnik A; Ott M; Wirth S; Schneider M; Loop T; Schumann S
    J Cardiothorac Vasc Anesth; 2016 Aug; 30(4):954-60. PubMed ID: 27521966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady pressure-flow relationship in a cast of the upper and central human airways.
    Ben Jebria A; Tabka Z; Techoueyres P
    Int J Biomed Comput; 1987 Mar; 20(3):211-24. PubMed ID: 3583441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The steady expiratory pressure-flow relation in a model pulmonary bifurcation.
    Collins JM; Shapiro AH; Kimmel E; Kamm RD
    J Biomech Eng; 1993 Aug; 115(3):299-305. PubMed ID: 8231146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory pressure-flow relationships of canine airways: a steady-state model for different gases.
    Sato J; Davey BL; Suki B; Bates JH
    J Appl Physiol (1985); 1994 Feb; 76(2):923-32. PubMed ID: 8175608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pulmonary arterial flow and positive end-expiratory pressure on retrograde bronchial mucosal blood flow.
    Yokomise H; Cardoso PF; Kato H; Keshavjee SH; Wada H; Slutsky AS; Patterson GA
    J Thorac Cardiovasc Surg; 1991 Feb; 101(2):201-8. PubMed ID: 1825125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway.
    Zhao Y; Brunskill CT; Lieber BB
    J Biomech Eng; 1997 Feb; 119(1):52-8. PubMed ID: 9083849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow distribution through human and canine airways during inhalation and exhalation.
    Briant JK; Cohen BS
    J Appl Physiol (1985); 1989 Oct; 67(4):1649-54. PubMed ID: 2793765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airflow in the avian respiratory tract: variations of O2 and CO2 concentrations in the bronchi of the duck.
    Powell FL; Geiser J; Gratz RK; Scheid P
    Respir Physiol; 1981 May; 44(2):195-213. PubMed ID: 6789436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of central airway resistance on frequency and tidal volume: a model study.
    Isabey D; Chang HK; Delpuech C; Harf A; Hatzfeld C
    J Appl Physiol (1985); 1986 Jul; 61(1):113-26. PubMed ID: 3733596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of axial bronchial tension on expiratory flow.
    Wilson TA
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Nov; 45(5):659-65. PubMed ID: 730563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.
    Ren S; Cai M; Shi Y; Xu W; Zhang XD
    Int J Numer Method Biomed Eng; 2018 Mar; 34(3):. PubMed ID: 28906592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convective exchange in oscillatory flow through bronchial-tree models.
    Scherer PW; Haselton FR
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Oct; 53(4):1023-33. PubMed ID: 7153112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airway compliance and flow limitation during forced expiration in dogs.
    Pedersen OF; Thiessen B; Lyager S
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):357-69. PubMed ID: 7061290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.