These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 7298578)
1. Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. Beatty JT; Gest H J Bacteriol; 1981 Nov; 148(2):584-93. PubMed ID: 7298578 [TBL] [Abstract][Full Text] [Related]
2. [Growth in the dark and the NADH-oxidase activity of Rhodopseudomonas palustris]. Rodova NA; Krasil'nikova EN Mikrobiologiia; 1974 Mar; 43(2):208-13. PubMed ID: 4151335 [No Abstract] [Full Text] [Related]
3. Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris. Eley JH; Knobloch K; Han TW Antonie Van Leeuwenhoek; 1979; 45(4):521-9. PubMed ID: 552814 [TBL] [Abstract][Full Text] [Related]
4. Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata. Marrs B; Stahl CL; Lien S; Gest H Proc Natl Acad Sci U S A; 1972 Apr; 69(4):916-20. PubMed ID: 4337246 [TBL] [Abstract][Full Text] [Related]
5. Keto acid metabolism in Desulfovibrio. Lewis AJ; Miller JD J Gen Microbiol; 1975 Oct; 90(2):286-92. PubMed ID: 1194893 [TBL] [Abstract][Full Text] [Related]
6. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. Hillmer P; Gest H J Bacteriol; 1977 Feb; 129(2):724-31. PubMed ID: 838685 [TBL] [Abstract][Full Text] [Related]
7. Developmental block in citric acid cycle mutants of Bacillus subtilis. Freese EB; Marks CL J Bacteriol; 1973 Dec; 116(3):1466-8. PubMed ID: 4201776 [TBL] [Abstract][Full Text] [Related]
8. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562 [TBL] [Abstract][Full Text] [Related]
9. Induction of citric acid cycle enzymes during initiation of sporulation by guanine nucleotide deprivation. Uratani-Wong B; Lopez JM; Freese E J Bacteriol; 1981 Apr; 146(1):337-44. PubMed ID: 6783618 [TBL] [Abstract][Full Text] [Related]
10. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression. Ohné M J Bacteriol; 1974 Mar; 117(3):1295-305. PubMed ID: 4205196 [TBL] [Abstract][Full Text] [Related]
11. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145. Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645 [TBL] [Abstract][Full Text] [Related]
12. [Tricarboxylic acid cycle enzymes in various species of phototrophic bacteria]. Krasil'nikova EN; Pedan LV; Firsov NN; Kondrat'eva EN Mikrobiologiia; 1973; 42(6):995-1000. PubMed ID: 4544539 [No Abstract] [Full Text] [Related]
13. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens. Lee WS; Cooper JK; Lynch WH Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768 [TBL] [Abstract][Full Text] [Related]
14. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid. Yuzbasheva EY; Agrimi G; Yuzbashev TV; Scarcia P; Vinogradova EB; Palmieri L; Shutov AV; Kosikhina IM; Palmieri F; Sineoky SP Metab Eng; 2019 Jul; 54():264-274. PubMed ID: 31071446 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. Ohné M J Bacteriol; 1975 Apr; 122(1):224-34. PubMed ID: 804468 [TBL] [Abstract][Full Text] [Related]
16. Glucose-mediated catabolite repression of the tricarboxylic acid cycle as an explanation for increased acetic acid production in suicidal Aeromonas strains. Namdari H; Cabelli VJ J Bacteriol; 1990 Aug; 172(8):4721-4. PubMed ID: 2165482 [TBL] [Abstract][Full Text] [Related]
17. Interchangeability of phosphorylation coupling factors in photosynthetic and respiratory energy conversion. Melandri BA; Baccarini-Melandri A; San Pietro A; Gest H Science; 1971 Oct; 174(4008):514-6. PubMed ID: 4398683 [TBL] [Abstract][Full Text] [Related]
18. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle. Green LS; Li Y; Emerich DW; Bergersen FJ; Day DA J Bacteriol; 2000 May; 182(10):2838-44. PubMed ID: 10781553 [TBL] [Abstract][Full Text] [Related]
19. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. Marrs B; Gest H J Bacteriol; 1973 Jun; 114(3):1045-51. PubMed ID: 4351385 [TBL] [Abstract][Full Text] [Related]
20. Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. Madigan M; Cox JC; Gest H J Bacteriol; 1982 Jun; 150(3):1422-9. PubMed ID: 7076623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]