These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 7298593)
1. Biosynthesis of nanaomycin. II. Purification and properties of nanaomycin D reductase involved in the formation of nanaomycin A from nanaomycin D1. Omura S; Tanaka H; Minami S; Takahashi I J Biochem; 1981 Aug; 90(2):355-62. PubMed ID: 7298593 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of nanaomycin: syntheses of nanaomycin E from nanaomycin A and of nanaomycin B from nanaomycin E in a cell-free system. Omura S; Minami S; Tanaka H J Biochem; 1981 Jul; 90(1):291-3. PubMed ID: 7287685 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of nanaomycin. III. Nanaomycin A formation from nanaomycin D by nanaomycin D reductase via a hydroquinone. Tanaka H; Minami-Kakinuma S; Omura S J Antibiot (Tokyo); 1982 Nov; 35(11):1565-70. PubMed ID: 7161196 [TBL] [Abstract][Full Text] [Related]
4. Bioconversion and biosynthesis of nanaomycins using cerulenin, a specific inhibitor of fatty acid and polyketide biosyntheses. Kitao C; Tanaka H; Minami S; Omura S J Antibiot (Tokyo); 1980 Jul; 33(7):711-6. PubMed ID: 7410214 [TBL] [Abstract][Full Text] [Related]
5. New compounds, nanaomycin F and G, discovered by physicochemical screening from a culture broth of Streptomyces rosa subsp. notoensis OS-3966. Nakashima T; Boonsnongcheep P; Kimura T; Iwatsuki M; Sato N; Nonaka K; Prathanturarug S; Takahashi Y; Ōmura S J Biosci Bioeng; 2015 Nov; 120(5):596-600. PubMed ID: 26100318 [TBL] [Abstract][Full Text] [Related]
6. Site of regulation of nanaomycin biosynthesis by inorganic phosphate. Masuma R; Zhen DZ; Tanaka Y; Omura S J Antibiot (Tokyo); 1990 Jan; 43(1):83-7. PubMed ID: 2307632 [TBL] [Abstract][Full Text] [Related]
7. Structure of nanaomycin E, a new nanaomycin. Kasai M; Shirahata K; Ishii S; Mineura K; Marumo H; Tanaka H; Omura S J Antibiot (Tokyo); 1979 May; 32(5):442-5. PubMed ID: 528392 [TBL] [Abstract][Full Text] [Related]
9. Nanaomycin K, a new epithelial-mesenchymal transition inhibitor produced by the actinomycete "Streptomyces rosa subsp. notoensis" OS-3966. Matsuo H; Nakanishi J; Noguchi Y; Kitagawa K; Shigemura K; Sunazuka T; Takahashi Y; Ōmura S; Nakashima T J Biosci Bioeng; 2020 Mar; 129(3):291-295. PubMed ID: 31582334 [TBL] [Abstract][Full Text] [Related]
10. Nanaomycins, new antibiotics produced by a strain of Streptomyces. III. A new component, nanaomycin C, and biological activities of nanaomycin derivatives. Tanaka H; Marumo H; Nagai T; Okada M; Taniguchi K J Antibiot (Tokyo); 1975 Dec; 28(12):925-30. PubMed ID: 1206004 [TBL] [Abstract][Full Text] [Related]
11. Control of ammonium ion level for efficient nanaomycin production. Tanaka Y; Masuma R; Omura S J Antibiot (Tokyo); 1984 Nov; 37(11):1370-5. PubMed ID: 6096342 [TBL] [Abstract][Full Text] [Related]
12. OM-173, new nanaomycin-type antibiotics produced by a strain of Streptomyces. Taxonomy, production, isolation and biological properties. Iwai Y; Kimura K; Takahashi Y; Hinotozawa K; Shimizu H; Tanaka H; Omura S J Antibiot (Tokyo); 1983 Oct; 36(10):1268-74. PubMed ID: 6643276 [TBL] [Abstract][Full Text] [Related]
13. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents. Masuma R; Tanaka Y; Tanaka H; Omura S J Antibiot (Tokyo); 1986 Nov; 39(11):1557-64. PubMed ID: 3793625 [TBL] [Abstract][Full Text] [Related]
14. Purification and characterization of the 3-ketosteroid-delta 1-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans. Choi KP; Molnár I; Yamashita M; Murooka Y J Biochem; 1995 May; 117(5):1043-9. PubMed ID: 8586617 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Krishna RV; Beilstein P; Leisinger T Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173 [TBL] [Abstract][Full Text] [Related]
16. Nanaomycin I and J: New nanaomycins generated by mycothiol-mediated compounds from "Streptomyces rosa subsp. notoensis" OS-3966. Matsuo H; Noguchi Y; Také A; Nakanishi J; Shigemura K; Sunazuka T; Takahashi Y; Ōmura S; Nakashima T J Biosci Bioeng; 2019 May; 127(5):549-553. PubMed ID: 30503170 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic studies of the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. Purification and characterization of CDP-6-deoxy-delta 3,4-glucoseen reductase based on its NADH:dichlorophenolindolphenol oxidoreductase activity. Han O; Miller VP; Liu HW J Biol Chem; 1990 May; 265(14):8033-41. PubMed ID: 2159466 [TBL] [Abstract][Full Text] [Related]
18. Degradation of chloroaromatics: purification and characterization of maleylacetate reductase from Pseudomonas sp. strain B13. Kaschabek SR; Reineke W J Bacteriol; 1993 Oct; 175(19):6075-81. PubMed ID: 8407778 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of the reductive half-reaction of the iron-sulfur flavoenzyme CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase. Gassner GT; Johnson DA; Liu HW; Ballou DP Biochemistry; 1996 Jun; 35(24):7752-61. PubMed ID: 8672475 [TBL] [Abstract][Full Text] [Related]
20. Studies on phospholipases from Streptomyces. II. Purification and properties of Streptomyces hachijoensis phospholipase D. Okawa Y; Yamaguchi T J Biochem; 1975 Aug; 78(2):363-72. PubMed ID: 6440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]