These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7298728)

  • 1. Stretch-induced growth of skeletal myotubes correlates with activation of the sodium pump.
    Vandenburgh HH; Kaufman S
    J Cell Physiol; 1981 Nov; 109(2):205-14. PubMed ID: 7298728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions.
    Brodie C; Sampson SR
    J Cell Physiol; 1989 Jul; 140(1):131-7. PubMed ID: 2544613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunicamycin reduces Na(+)-K(+)-pump expression in cultured skeletal muscle.
    Alboim SV; Bak A; Sampson SR
    J Cell Physiol; 1992 Mar; 150(3):640-6. PubMed ID: 1311332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of muscle growth in vitro to sodium pump activity and transmembrane potential.
    Vandenburgh HH; Lent CM
    J Cell Physiol; 1984 Jun; 119(3):283-95. PubMed ID: 6327731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+-dependent amino acid transport is a major factor determining the rate of (Na+,K+)-ATPase mediated cation transport in intact HeLa cells.
    Zibirre R; Poronnik P; Koch G
    J Cell Physiol; 1986 Oct; 129(1):85-93. PubMed ID: 3020065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of system A amino acid transport through long-term treatment with ouabain: correlation with increased (Na+/K+)-ATPase activity.
    Schenerman MA; Leister KJ; Trachtenberg DK; Racker E
    J Cell Physiol; 1988 May; 135(2):157-62. PubMed ID: 2836438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic ethanol treatment on membrane potential, its electrogenic pump component and Na-K pump activity of cultured rat skeletal myotubes.
    Brodie C; Sampson SR
    J Pharmacol Exp Ther; 1987 Sep; 242(3):1104-8. PubMed ID: 2443643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Na+/K(+)-pump in rat peritoneal mast cells: some aspects of regulation of activity and cellular function.
    Knudsen T
    Dan Med Bull; 1995 Nov; 42(5):441-54. PubMed ID: 8747801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; RĂ¼ller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinases A and C stimulate the Na+ active transport in frog skeletal muscle without an appreciable change in the number of sarcolemmal Na+ pumps.
    Venosa RA
    Acta Physiol Scand; 2005 Dec; 185(4):329-34. PubMed ID: 16266374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion into mass: how does tension stimulate muscle growth?
    Vandenburgh HH
    Med Sci Sports Exerc; 1987 Oct; 19(5 Suppl):S142-9. PubMed ID: 3316913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cellular growth by sodium pump activity.
    Shank BB; Smith NE
    J Cell Physiol; 1976 Mar; 87(3):377-87. PubMed ID: 130380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transient increase in amino acid transport modulated by insulin in differentiating muscle cells.
    Farfel Z; Karlish S; Prives J
    J Cell Physiol; 1979 Feb; 98(2):279-82. PubMed ID: 422657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro model for stretch-induced hypertrophy of skeletal muscle.
    Vandenburgh H; Kaufman S
    Science; 1979 Jan; 203(4377):265-8. PubMed ID: 569901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indomethacin alters the Na,K-ATPase response to protein kinase C activation in cultured rabbit nonpigmented ciliary epithelium.
    Delamere NA; Parkerson J; Hou Y
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):866-75. PubMed ID: 9112982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na,K-ATPase polypeptide upregulation responses in lens epithelium.
    Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)/K(+) pump expression in the L8 rat myogenic cell line: effects of heterologous alpha subunit transfection.
    Sharabani-Yosef O; Bak A; Nir U; Sampson SR
    J Cell Physiol; 2001 Jun; 187(3):365-73. PubMed ID: 11319760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton.
    Venosa RA
    J Physiol; 2003 Apr; 548(Pt 2):451-9. PubMed ID: 12598593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells.
    Gentile DA; Skoner DP
    Clin Exp Allergy; 1996 Dec; 26(12):1449-60. PubMed ID: 9027446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.