These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1. Involvement of a single hydroxylase species in the hydroxylation of palmitate at the omega-1, omega-2 and omega-3 positions by a preparation from Bacillus megaterium. Ho PP; Fulco AJ Biochim Biophys Acta; 1976 May; 431(2):249-56. PubMed ID: 7299 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from bacillus megaterium. Matson RS; Hare RS; Fulco AJ Biochim Biophys Acta; 1977 Jun; 487(3):487-94. PubMed ID: 18202 [TBL] [Abstract][Full Text] [Related]
3. Carbon monoxide and hydroxymercuribenzoate sensitivity of a fatty acid (omega-2) hydroxylase from Bacillus megaterium. Hare RS; Fulco AJ Biochem Biophys Res Commun; 1975 Jul; 65(2):665-72. PubMed ID: 238536 [No Abstract] [Full Text] [Related]
4. Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Miura Y; Fulco AJ Biochim Biophys Acta; 1975 Jun; 388(3):305-17. PubMed ID: 805599 [TBL] [Abstract][Full Text] [Related]
5. Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Boddupalli SS; Pramanik BC; Slaughter CA; Estabrook RW; Peterson JA Arch Biochem Biophys; 1992 Jan; 292(1):20-8. PubMed ID: 1727637 [TBL] [Abstract][Full Text] [Related]
6. Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Oliver CF; Modi S; Primrose WU; Lian LY; Roberts GC Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):537-44. PubMed ID: 9359427 [TBL] [Abstract][Full Text] [Related]
7. Hydroxystearates as inhibitors of palmitate hydroxylation catalyzed by the cytochrome P-450 monooxygenase from Bacillus megaterium. Matson RS; Fulco AJ Biochem Biophys Res Commun; 1981 Nov; 103(2):531-5. PubMed ID: 6800365 [No Abstract] [Full Text] [Related]
8. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
9. Fatty acid signals in Bacillus megaterium are attenuated by cytochrome P-450-mediated hydroxylation. English N; Palmer CN; Alworth WL; Kang L; Hughes V; Wolf CR Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):363-8. PubMed ID: 9359402 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic cascade biosynthesis reaction of musky macrolactones from fatty acids. Meng S; Guo J; Li Z; Nie K; Xu H; Tan T; Liu L Enzyme Microb Technol; 2019 Dec; 131():109417. PubMed ID: 31615680 [TBL] [Abstract][Full Text] [Related]
11. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
12. Subterminal hydroxylation of fatty acids by a cytochrome P-450-dependent enzyme system from a fungus, Fusarium oxysporum. Shoun H; Sudo Y; Beppu T J Biochem; 1985 Mar; 97(3):755-63. PubMed ID: 4019433 [TBL] [Abstract][Full Text] [Related]
13. P450 in biotechnology: zinc driven omega-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. Schwaneberg U; Appel D; Schmitt J; Schmid RD J Biotechnol; 2000 Dec; 84(3):249-57. PubMed ID: 11164266 [TBL] [Abstract][Full Text] [Related]
14. Hydroxylation of 9-hydroxystearate by a soluble cytochrome P-450 dependent fatty acid hydroxylase from Bacillus megaterium. Matson RS; Stein RA; Fulco AJ Biochem Biophys Res Commun; 1980 Dec; 97(3):955-61. PubMed ID: 6781502 [No Abstract] [Full Text] [Related]
15. Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium. Ruettinger RT; Fulco AJ J Biol Chem; 1981 Jun; 256(11):5728-34. PubMed ID: 6787044 [TBL] [Abstract][Full Text] [Related]
16. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
17. (Omega -2) hydroxylation of fatty acids by a soluble system from bacillus megaterium. Miura Y; Fulco AJ J Biol Chem; 1974 Mar; 249(6):1880-8. PubMed ID: 4150419 [No Abstract] [Full Text] [Related]
18. A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Rock DA; Perkins BN; Wahlstrom J; Jones JP Arch Biochem Biophys; 2003 Aug; 416(1):9-16. PubMed ID: 12859976 [TBL] [Abstract][Full Text] [Related]
19. Thr268 in substrate binding and catalysis in P450BM-3. Truan G; Peterson JA Arch Biochem Biophys; 1998 Jan; 349(1):53-64. PubMed ID: 9439582 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of cytochrome P-450 with prostaglandin omega-hydroxylase activity in rabbit placental microsomes. Yamamoto S; Kusunose E; Matsubara S; Ichihara K; Kusunose M J Biochem; 1986 Jul; 100(1):175-81. PubMed ID: 3759928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]