These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Golovleva LA; Pertsova RN; Evtushenko LI; Baskunov BP Biodegradation; 1990; 1(4):263-71. PubMed ID: 1368472 [TBL] [Abstract][Full Text] [Related]
4. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Hayashi S; Sano T; Suyama K; Itoh K Microbiol Res; 2016; 188-189():62-71. PubMed ID: 27296963 [TBL] [Abstract][Full Text] [Related]
5. Microbial biodegradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols. Karns JS; Kilbane JJ; Chatterjee DK; Chakrabarty AM Basic Life Sci; 1984; 28():3-21. PubMed ID: 6704076 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight. Daubaras DL; Danganan CE; Hübner A; Ye RW; Hendrickson W; Chakrabarty AM Gene; 1996 Nov; 179(1):1-8. PubMed ID: 8955624 [TBL] [Abstract][Full Text] [Related]
7. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Kilbane JJ; Chatterjee DK; Karns JS; Kellogg ST; Chakrabarty AM Appl Environ Microbiol; 1982 Jul; 44(1):72-8. PubMed ID: 7125648 [TBL] [Abstract][Full Text] [Related]
8. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils. Itoh K; Kinoshita M; Morishita S; Chida M; Suyama K FEMS Microbiol Ecol; 2013 Apr; 84(1):124-32. PubMed ID: 23167922 [TBL] [Abstract][Full Text] [Related]
9. Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Kilbane JJ; Chatterjee DK; Chakrabarty AM Appl Environ Microbiol; 1983 May; 45(5):1697-700. PubMed ID: 6870246 [TBL] [Abstract][Full Text] [Related]
10. Catabolism of terbuthylazine by mixed bacterial culture originating from s-triazine-contaminated soil. Jurina T; Terzić S; Ahel M; Stipičević S; Kontrec D; Kurtanjek Z; Udiković-Kolić N Appl Microbiol Biotechnol; 2014 Aug; 98(16):7223-32. PubMed ID: 24788365 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Calvayrac C; Martin-Laurent F; Faveaux A; Picault N; Panaud O; Coste CM; Chaabane H; Cooper JF Pest Manag Sci; 2012 Mar; 68(3):340-7. PubMed ID: 21919184 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Chatterjee DK; Kilbane JJ; Chakrabarty AM Appl Environ Microbiol; 1982 Aug; 44(2):514-6. PubMed ID: 7125661 [TBL] [Abstract][Full Text] [Related]
13. Effect of herbicide concentration and organic and inorganic nutrient amendment on the mineralization of mecoprop, 2,4-D and 2,4,5-T in soil and aquifer samples. de Lipthay JR; Sørensen SR; Aamand J Environ Pollut; 2007 Jul; 148(1):83-93. PubMed ID: 17254678 [TBL] [Abstract][Full Text] [Related]
15. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100. Hübner A; Hendrickson W J Bacteriol; 1997 Apr; 179(8):2717-23. PubMed ID: 9098071 [TBL] [Abstract][Full Text] [Related]
16. The fate of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) following oral administration to man. Gehring PJ; Kramer CG; Schwetz BA; Rose JQ; Rowe VK Toxicol Appl Pharmacol; 1973 Nov; 26(3):352-61. PubMed ID: 4588304 [No Abstract] [Full Text] [Related]