These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7302983)

  • 1. Lead exposure and renal failure: does renal insufficiency influence lead kinetics?
    Campbell BC; Elliott HL; Meredith PA
    Toxicol Lett; 1981 Oct; 9(2):121-4. PubMed ID: 7302983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetics of CaNa2EDTA and chelation of lead in renal failure.
    Osterloh J; Becker CE
    Clin Pharmacol Ther; 1986 Dec; 40(6):686-93. PubMed ID: 3096624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of urine flow on renal clearance of creatinine in patients with normal and impaired kidney function.
    Vree TB; Hekster YA; Hafkenscheid JC; van Dalen R; Friesen WT
    Drug Intell Clin Pharm; 1981 Mar; 15(3):194-8. PubMed ID: 7274034
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of elevated lead and cadmium burdens on renal function and calcium metabolism.
    Greenberg A; Parkinson DK; Fetterolf DE; Puschett JB; Ellis KJ; Wielopolski L; Vaswani AN; Cohn SH; Landrigan PJ
    Arch Environ Health; 1986; 41(2):69-76. PubMed ID: 3718006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental lead exposure and progressive renal insufficiency.
    Lin JL; Tan DT; Hsu KH; Yu CC
    Arch Intern Med; 2001 Jan; 161(2):264-71. PubMed ID: 11176742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect modification by delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers.
    Weaver VM; Lee BK; Todd AC; Ahn KD; Shi W; Jaar BG; Kelsey KT; Lustberg ME; Silbergeld EK; Parsons PJ; Wen J; Schwartz BS
    Environ Res; 2006 Sep; 102(1):61-9. PubMed ID: 16487505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pharmacokinetics of ziprasidone in subjects with normal and impaired renal function.
    Aweeka F; Jayesekara D; Horton M; Swan S; Lambrecht L; Wilner KD; Sherwood J; Anziano RJ; Smolarek TA; Turncliff RZ
    Br J Clin Pharmacol; 2000; 49 Suppl 1(Suppl 1):27S-33S. PubMed ID: 10771451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics of enprofylline in patients with impaired renal function after a single intravenous dose.
    Lunell E; Borgå O; Larsson R
    Eur J Clin Pharmacol; 1984; 26(1):87-93. PubMed ID: 6714295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nalidixic acid kinetics in renal insufficiency.
    Cuisinaud G; Ferry N; Pozet N; Zech PY; Sassard J
    Br J Clin Pharmacol; 1982 Oct; 14(4):489-93. PubMed ID: 7138733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilizable lead in patients with chronic renal failure.
    Koster J; Erhardt A; Stoeppler M; Mohl C; Ritz E
    Eur J Clin Invest; 1989 Apr; 19(2):228-33. PubMed ID: 2499482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism and determination of lead in lead poisoning.
    Matsumoto H
    Rinsho Byori; 1971 Jan; 19(1):56-62. PubMed ID: 5103832
    [No Abstract]   [Full Text] [Related]  

  • 12. Pharmacokinetics of sertindole and dehydrosertindole in volunteers with normal or impaired renal function.
    Wong SL; Menacherry S; Mulford D; Schmitz PJ; Locke C; Granneman GR
    Eur J Clin Pharmacol; 1997; 52(3):223-7. PubMed ID: 9218930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nifedipine: influence of renal function on pharmacokinetic/hemodynamic relationship.
    Kleinbloesem CH; van Brummelen P; van Harten J; Danhof M; Breimer DD
    Clin Pharmacol Ther; 1985 May; 37(5):563-74. PubMed ID: 3987180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead and the kidney.
    Goyer RA
    Curr Top Pathol; 1971; 55():147-76. PubMed ID: 4333698
    [No Abstract]   [Full Text] [Related]  

  • 15. Scintigraphic assessment of renal function in steel plant workers occupationally exposed to lead.
    Wrońska-Nofer T; Pisarska A; Trzcinka-Ochocka M; Hałatek T; Stetkiewicz J; Braziewicz J; Nofer JR; Wąsowicz W
    J Occup Health; 2015; 57(2):91-9. PubMed ID: 25735505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-level environmental exposure to lead and renal adverse effects: a cross-sectional study in the population of children bordering the Mbeubeuss landfill near Dakar, Senegal.
    Cabral M; Dieme D; Verdin A; Garçon G; Fall M; Bouhsina S; Dewaele D; Cazier F; Tall-Dia A; Diouf A; Shirali P
    Hum Exp Toxicol; 2012 Dec; 31(12):1280-91. PubMed ID: 22837546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine metabolism in patients with gout: the role of lead.
    Miranda-Carús E; Mateos FA; Sanz AG; Herrero E; Ramos T; Puig JG
    Nephron; 1997; 75(3):327-35. PubMed ID: 9069456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead poisoning in dogs: analysis of blood, urine, hair, and liver for lead.
    Zook BC; Kopito L; Carpenter JL; Cramer DV; Shwachman H
    Am J Vet Res; 1972 May; 33(5):903-9. PubMed ID: 4623390
    [No Abstract]   [Full Text] [Related]  

  • 19. Pharmacokinetics of hydrochlorothiazide in relation to renal function.
    Niemeyer C; Hasenfuss G; Wais U; Knauf H; Schäfer-Korting M; Mutschler E
    Eur J Clin Pharmacol; 1983; 24(5):661-5. PubMed ID: 6873147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-dose pharmacokinetics of lomefloxacin in patients with normal and impaired renal function.
    Nilsen OG; Saltvedt E; Walstad RA; Marstein S
    Am J Med; 1992 Apr; 92(4A):38S-40S. PubMed ID: 1316068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.