These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 7304334)

  • 1. Microembolization induced oxygen utilization impairment in the canine gracilis muscle.
    Ellsworth ML; Goldfarb RD; Alexander RS; Bell DR; Powers SR
    Adv Shock Res; 1981; 5():89-99. PubMed ID: 7304334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen consumption in canine skeletal muscle following massive saline infusion.
    Landau SE; Powers SR; Alexander RS; Goldfarb RD; Boveja B
    Adv Shock Res; 1979; 2():93-101. PubMed ID: 262807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen extraction and vascular dilation are dependently increased in skeletal muscle during canine endotoxemia.
    Hershey JC; Bond RF
    Circ Shock; 1993 Jun; 40(2):132-8. PubMed ID: 8508517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutritive and non-nutritive blood flow in canine skeletal muscle after partial microembolization.
    Gaehtgens P; Benner KU; Schickendantz S
    Pflugers Arch; 1976 Jan; 361(2):183-9. PubMed ID: 943092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic adaptations to repeated periods of contraction with reduced blood flow in canine skeletal muscle.
    MacInnes A; Timmons JA
    BMC Physiol; 2005 Jul; 5():11. PubMed ID: 16018808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low-volume hemoglobin glutamer-200 versus normal saline and arginine vasopressin resuscitation on systemic and skeletal muscle blood flow and oxygenation in a canine hemorrhagic shock model.
    Driessen B; Zarucco L; Gunther RA; Burns PM; Lamb SV; Vincent SE; Boston RA; Jahr JS; Cheung AT
    Crit Care Med; 2007 Sep; 35(9):2101-9. PubMed ID: 17581486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Coronary resistance system in evaluation of microvascular dysfunction after intracoronary microembolization: an experimental study].
    Zhang LH; Ge JB; Qian JY; Zhang QY; Luo ZC; Wang YY; Cai NS; Wang WQ
    Zhonghua Yi Xue Za Zhi; 2004 Apr; 84(7):578-82. PubMed ID: 15144594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased muscle oxygen consumption during electrical stimulation following endotoxin administration.
    Romanosky AJ; McGuinness O; Bagby GJ; Spitzer JJ
    Adv Shock Res; 1981; 6():121-9. PubMed ID: 7349584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defects in peripheral oxygen utilization following trauma and shock.
    Shah DM; Newell JC; Saba TM
    Arch Surg; 1981 Oct; 116(10):1277-81. PubMed ID: 7283702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization.
    Canton M; Skyschally A; Menabò R; Boengler K; Gres P; Schulz R; Haude M; Erbel R; Di Lisa F; Heusch G
    Eur Heart J; 2006 Apr; 27(7):875-81. PubMed ID: 16434410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased red blood cell deformability and impaired oxygen utilization during human sepsis.
    Powell RJ; Machiedo GW; Rush BF
    Am Surg; 1993 Jan; 59(1):65-8. PubMed ID: 8480935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting blood flow and oxygen consumption in soleus and gracilis muscles of cats.
    Bockman EL; McKenzie JE; Ferguson JL
    Am J Physiol; 1980 Oct; 239(4):H516-H524. PubMed ID: 7425144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splanchnic circulation and metabolism in patients with acute liver failure.
    Clemmesen O
    Dan Med Bull; 2002 Aug; 49(3):177-93. PubMed ID: 12238280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in blood flow and capillary exchange surface during vasodilation and/or microembolization in skeletal muscle.
    Benner KU; Gaehtgens P; Schickendantz S
    Bibl Anat; 1975; 13():167-8. PubMed ID: 1231714
    [No Abstract]   [Full Text] [Related]  

  • 16. Acute hyperoxaemia-induced effects on regional blood flow, oxygen consumption and central circulation in man.
    Rousseau A; Bak Z; Janerot-Sjöberg B; Sjöberg F
    Acta Physiol Scand; 2005 Mar; 183(3):231-40. PubMed ID: 15743383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional sympathetic denervation affects the relation between canine local myocardial blood flow and oxygen consumption.
    Alders DJ; Cornelussen RN; Prinzen FW; Specht PA; Noble MI; Drake-Holland AJ; de Kanter FJ; van Beek JH
    Exp Physiol; 2007 May; 92(3):541-8. PubMed ID: 17303649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on microembolization of circulatory pathways in skeletal muscles caused by thrombocyte aggregates].
    Gaehtgens P; Benner KU; Schickendantz S
    Verh Dtsch Ges Kreislaufforsch; 1974; 40():218-21. PubMed ID: 4450653
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of lumbar sympathectomy on canine transcutaneous oxygen tension.
    Brothers TE; Wakefield TW; Jacobs LA; Lindenauer SM
    Surgery; 1993 Apr; 113(4):433-7. PubMed ID: 8456400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiopulmonary effects of halothane in hypovolemic dogs.
    Pascoe PJ; Haskins SC; Ilkiw JE; Patz JD
    Am J Vet Res; 1994 Jan; 55(1):121-6. PubMed ID: 8141484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.