These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 7304735)

  • 1. Selective breeding of chickens for erythrocytes with high and low leucine transport activity.
    Somes RG; Smagula RM; Lerner J
    Am J Physiol; 1981 Nov; 241(5):C233-42. PubMed ID: 7304735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-ion dependence of glycine and lysine transport in chicken erythrocytes genetically selected for high and low leucine transport activity.
    Lerner J; Smagula RM; Somes RG
    Comp Biochem Physiol A Comp Physiol; 1984; 78(2):277-8. PubMed ID: 6146447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transport and intracellular Na+ and K+ content of chicken erythrocytes genetically selected for high and low leucine transport activity.
    Lerner J; Smagula RM; Hilchey SE; Somes RG
    Comp Biochem Physiol A Comp Physiol; 1982; 73(2):243-8. PubMed ID: 6128112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membrane amino acid transport processes in the domestic fowl (Gallus domesticus).
    Lerner J
    Comp Biochem Physiol A Comp Physiol; 1984; 78(2):205-15. PubMed ID: 6146442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of leucine and lysine in chicken red blood cells of varying density.
    Lerner J; Hilchey SE; Smagula RM
    Comp Biochem Physiol A Comp Physiol; 1982; 73(1):77-80. PubMed ID: 6127186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the hypothesis that system y(+)L accounts for high- and low-transport phenotypes in chicken erythrocytes using L-leucine as substrate.
    Angelo S; Cabrera S; Rojas AM; Rodríguez N; Devés R
    J Membr Biol; 2005 Mar; 204(2):93-100. PubMed ID: 16151705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in amino acid transport in the chicken erythrocyte.
    Lerner J; Hilchey SE; Smagula RM
    Comp Biochem Physiol A Comp Physiol; 1983; 74(4):881-4. PubMed ID: 6132735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between monosaccharides and leucine in basolateral membrane of isolated chick intestinal epithelial cells.
    Bolufer J; Santos FJ; Vila A
    Rev Esp Fisiol; 1982 Mar; 38(1):65-70. PubMed ID: 7100606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lindane on galactose and leucine transport in chicken enterocytes.
    Moreno MJ; Pellicer S; Marti A; Arenas JC; Fernández-Otero MP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1994 Oct; 109(2):159-66. PubMed ID: 7533627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep.
    Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI
    J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrase and transporter in chickens.
    Liu N; Ru YJ; Li FD; Cowieson AJ
    J Anim Sci; 2008 Dec; 86(12):3432-9. PubMed ID: 18708594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cationic amino acid transport systems in rat erythrocytes: lack of effect of uraemia on L-arginine influx.
    Brunini TM; Yaqoob MM; Roberts NB; Ellory JC; Moss MB; Siqueira MA; Mann GE; Mendes Ribeiro AC
    Clin Exp Pharmacol Physiol; 2006 Aug; 33(8):702-7. PubMed ID: 16895543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ethanol on amino acid transport in basolateral liver plasma membrane vesicles.
    Moseley RH; Murphy SM
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G458-65. PubMed ID: 2923209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chronic alterations of salt intake and aging on the kinetic of red cell Na+ and K+ transport in Sprague-Dawley rats.
    Zicha J; Duhm J
    Physiol Bohemoslov; 1990; 39(1):37-44. PubMed ID: 2142786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney.
    Spencer AM; Sack J; Hong SK
    Am J Physiol; 1979 Feb; 236(2):F126-30. PubMed ID: 217277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid transport across the hen colon: interactions between leucine and lysine.
    Munck BG
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G532-9. PubMed ID: 2493744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.