These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7305716)

  • 41. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.
    Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
    Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma.
    Pease ME; McKinnon SJ; Quigley HA; Kerrigan-Baumrind LA; Zack DJ
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):764-74. PubMed ID: 10711692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synaptic proteins and axonal flow in the pigeon visual pathway.
    Cuénod M; Schonbach J
    J Neurochem; 1971 Jun; 18(6):809-16. PubMed ID: 5567903
    [No Abstract]   [Full Text] [Related]  

  • 44. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping.
    Gaasterland D; Tanishima T; Kuwabara T
    Invest Ophthalmol Vis Sci; 1978 Sep; 17(9):838-46. PubMed ID: 81192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of elevated intraocular pressure on slow axonal protein flow.
    Levy NS
    Invest Ophthalmol; 1974 Sep; 13(9):691-5. PubMed ID: 4137262
    [No Abstract]   [Full Text] [Related]  

  • 46. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation.
    Quigley HA; Flower RW; Addicks EM; McLeod DS
    Invest Ophthalmol Vis Sci; 1980 May; 19(5):505-17. PubMed ID: 6154668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins.
    Balaratnasingam C; Morgan WH; Bass L; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):986-99. PubMed ID: 18326722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on the deformations of the lamina cribrosa during glaucoma.
    Tian H; Li L; Song F
    Acta Biomater; 2017 Jun; 55():340-348. PubMed ID: 28323178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrastructural changes and immunocytochemical localization of microtubule-associated protein 1 in guinea pig optic nerves after acute increase in intraocular pressure.
    Ou B; Ohno S; Tsukahara S
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):963-71. PubMed ID: 9579475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Intraaxonal transport of ethidium-bromide-sensitive RNA- and lowmolecular 3H-uridine-compounds in the optic tract of teleosts].
    Wolburg H
    Exp Brain Res; 1972; 15(4):348-63. PubMed ID: 4116912
    [No Abstract]   [Full Text] [Related]  

  • 51. Axonal transport of (3H)glucose radioactivity in the optic system of Scardinius erythrophthalamus.
    Breer H; Rahmann H
    J Neurochem; 1974 Feb; 22(2):245-50. PubMed ID: 4829951
    [No Abstract]   [Full Text] [Related]  

  • 52. Blood flow and glucose consumption in the optic nerve, retina and brain: effects of high intraocular pressure.
    Sperber GO; Bill A
    Exp Eye Res; 1985 Nov; 41(5):639-53. PubMed ID: 4092755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model.
    Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):154-9. PubMed ID: 12506068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure.
    Balaratnasingam C; Morgan WH; Bass L; Matich G; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3632-44. PubMed ID: 17652733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3-H]-L-leucine.
    Lasek R
    Brain Res; 1968 Mar; 7(3):360-77. PubMed ID: 5639601
    [No Abstract]   [Full Text] [Related]  

  • 56. Axonal transport in the asymmetric optic axons of flatfish.
    Murray M
    Exp Neurol; 1974 Mar; 42(3):636-46. PubMed ID: 4828680
    [No Abstract]   [Full Text] [Related]  

  • 57. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure.
    Pena JD; Agapova O; Gabelt BT; Levin LA; Lucarelli MJ; Kaufman PL; Hernandez MR
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2303-14. PubMed ID: 11527944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Axonal Transport in the Rat Optic Nerve Following Short-Term Reduction in Cerebrospinal Fluid Pressure or Elevation in Intraocular Pressure.
    Zhang Z; Liu D; Jonas JB; Wu S; Kwong JM; Zhang J; Liu Q; Li L; Lu Q; Yang D; Wang J; Wang N
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4257-66. PubMed ID: 26161987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125.
    Sossi N; Anderson DR
    Arch Ophthalmol; 1983 Jan; 101(1):98-101. PubMed ID: 6849662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast transport system of materials in mammalian nerve fibers.
    Ochs S; Sabri MI; Johnson J
    Science; 1969 Feb; 163(3868):686-7. PubMed ID: 5762934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.