These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7306067)

  • 1. Activity of phosphorylase in total global ischaemia in the rat heart. A phosphorus-31 nuclear-magnetic-resonance study.
    Bailey IA; Williams SR; Radda GK; Gadian DG
    Biochem J; 1981 Apr; 196(1):171-8. PubMed ID: 7306067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by 2-deoxyglucose and 1,5-gluconolactone of glycogen mobilization in astroglia-rich primary cultures.
    Dringen R; Hamprecht B
    J Neurochem; 1993 Apr; 60(4):1498-504. PubMed ID: 8455036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crucial role of intracellular effectors on glycogenolysis in the isolated rat heart: potential consequences on the myocardial tolerance to ischemia.
    Lavanchy N; Grably S; Garnier A; Rossi A
    Mol Cell Biochem; 1996; 160-161():273-82. PubMed ID: 8901483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accumulation of 2-deoxyglucose-6-phosphate activates glycogen synthase (and inactivates glycogen phosphorylase) in rat skeletal muscle.
    Bergamini E; Locci-Cubeddu T; Masiello P; Villa E
    Boll Soc Ital Biol Sper; 1981 Dec; 57(23):2368-71. PubMed ID: 6802151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 2-deoxyglucose on Saccharomyces cerevisiae as observed by in vivo 31P-NMR.
    Loureiro-Dias MC; Santos H
    FEMS Microbiol Lett; 1989 Jan; 48(1):25-8. PubMed ID: 2653955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of insulin on myocardial metabolism and acidosis in normoxia and ischaemia. A 31P-NMR study.
    Bailey IA; Radda GK; Seymour AM; Williams SR
    Biochim Biophys Acta; 1982 Feb; 720(1):17-27. PubMed ID: 7037057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of inactivation of muscle glycogen phosphorylase by insulin.
    Villar-Palasi C
    Biochim Biophys Acta; 1994 Dec; 1224(3):384-8. PubMed ID: 7803494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle.
    Ren JM; Gulve EA; Cartee GD; Holloszy JO
    Am J Physiol; 1992 Dec; 263(6):E1086-91. PubMed ID: 1476181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy metabolism and cellular pH in normal and pathological conditions. A new look through 31phosphorus nuclear magnetic resonance.
    Radda GK; Gadian DG; Ross BD
    Ciba Found Symp; 1982; 87():36-57. PubMed ID: 6918294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of myocardial glycogenolysis during post-ischemic reperfusion.
    Kalil-Filho R; Gerstenblith G; Hansford RG; Chacko VP; Vandegaer K; Weiss RG
    J Mol Cell Cardiol; 1991 Dec; 23(12):1467-79. PubMed ID: 1811061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance.
    Garlick PB; Radda GK; Seeley PJ
    Biochem J; 1979 Dec; 184(3):547-54. PubMed ID: 44193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG; Zographos SE; Johnson LN; Papageorgiou AC; Acharya KR
    J Mol Biol; 1995 Dec; 254(5):900-17. PubMed ID: 7500360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of partially phosphorylated phosphorylase in isoproterenol stimulated rat hearts.
    Vereb G; Szücs K; Szabó J; Belanova M; Bot G
    Mol Cell Biochem; 1986 Feb; 69(2):139-46. PubMed ID: 3083238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P-NMR investigation of solid tumours in the living rat.
    Griffiths JR; Stevens AN; Iles RA; Gordon RE; Shaw D
    Biosci Rep; 1981 Apr; 1(4):319-25. PubMed ID: 7295895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytosolic concentration of phosphate determines the maximal rate of glycogenolysis in perfused rat liver.
    Vanstapel F; Waebens M; Van Hecke P; Decanniere C; Stalmans W
    Biochem J; 1990 Feb; 266(1):207-12. PubMed ID: 2155606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous in vivo monitoring of cerebral deoxyglucose and deoxyglucose-6-phosphate by 13C[1H] nuclear magnetic resonances spectroscopy.
    Kotyk JJ; Rust RS; Ackerman JJ; Deuel RK
    J Neurochem; 1989 Nov; 53(5):1620-8. PubMed ID: 2795021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin increases the rate of degradation of 2-deoxy-glucose-6-phosphate in the perfused rat heart: a 31P NMR study.
    Hoerter J; Dormont D; Girault M; Guéron M; Syrota A
    J Mol Cell Cardiol; 1991 Oct; 23(10):1101-15. PubMed ID: 1749002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the ionization state of substrate alpha-D-glucopyranosyl phosphate bound to glycogen phosphorylase b.
    Street IP; Withers SG
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):1017-23. PubMed ID: 8948464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b.
    Johnson LN; Snape P; Martin JL; Acharya KR; Barford D; Oikonomakos NG
    J Mol Biol; 1993 Jul; 232(1):253-67. PubMed ID: 8331662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the inhibition of hepatic glycogenolysis by fructose. A 31P-NMR study in perfused rat liver using the fructose analogue 2,5-anhydro-D-mannitol.
    Bruynseels K; Bergans N; Gillis N; van Dorpen F; Van Hecke P; Stalmans W; Vanstapel F
    NMR Biomed; 1999 May; 12(3):145-56. PubMed ID: 10414949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.