BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7306503)

  • 1. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate.
    Clarke DE; Price NC
    Biochem J; 1979 Aug; 181(2):467-75. PubMed ID: 496894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of pH studies to elucidate the catalytic mechanism of rabbit muscle creatine kinase.
    Cook PF; Kenyon GL; Cleland WW
    Biochemistry; 1981 Mar; 20(5):1204-10. PubMed ID: 7013788
    [No Abstract]   [Full Text] [Related]  

  • 5. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 7. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 9. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of diethyl pyrocarbonate with pyruvate kinase.
    Dann LG; Britton HG
    Biochem J; 1974 Feb; 137(2):405-7. PubMed ID: 4824216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 13. Allosteric properties of muscle phosphofructokinase. 3. Thiol reactivity as an indicator of conformational state.
    Mathias MM; Kemp RG
    Biochemistry; 1972 Feb; 11(4):578-84. PubMed ID: 4334906
    [No Abstract]   [Full Text] [Related]  

  • 14. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP].
    Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS
    Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle.
    Wallimann T; Eppenberger HM
    Cell Muscle Motil; 1985; 6():239-85. PubMed ID: 3888375
    [No Abstract]   [Full Text] [Related]  

  • 17. Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of adenosine 5'-diphosphate with aromatic residue(s).
    Vasák M; Nagayama K; Wüthrich K; Mertens ML; Kägi JH
    Biochemistry; 1979 Nov; 18(23):5050-5. PubMed ID: 497170
    [No Abstract]   [Full Text] [Related]  

  • 18. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of creatine kinase by chromium nucleotides.
    Schimerlik MI; Cleland WW
    J Biol Chem; 1973 Dec; 248(24):8418-23. PubMed ID: 4797017
    [No Abstract]   [Full Text] [Related]  

  • 20. Creatine kinase: structure-activity relationships.
    Kenyon GL; Reed GH
    Adv Enzymol Relat Areas Mol Biol; 1983; 54():367-426. PubMed ID: 6342340
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.