These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7306503)

  • 1. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate.
    Clarke DE; Price NC
    Biochem J; 1979 Aug; 181(2):467-75. PubMed ID: 496894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of pH studies to elucidate the catalytic mechanism of rabbit muscle creatine kinase.
    Cook PF; Kenyon GL; Cleland WW
    Biochemistry; 1981 Mar; 20(5):1204-10. PubMed ID: 7013788
    [No Abstract]   [Full Text] [Related]  

  • 5. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 7. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 9. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of diethyl pyrocarbonate with pyruvate kinase.
    Dann LG; Britton HG
    Biochem J; 1974 Feb; 137(2):405-7. PubMed ID: 4824216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 13. Allosteric properties of muscle phosphofructokinase. 3. Thiol reactivity as an indicator of conformational state.
    Mathias MM; Kemp RG
    Biochemistry; 1972 Feb; 11(4):578-84. PubMed ID: 4334906
    [No Abstract]   [Full Text] [Related]  

  • 14. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP].
    Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS
    Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle.
    Wallimann T; Eppenberger HM
    Cell Muscle Motil; 1985; 6():239-85. PubMed ID: 3888375
    [No Abstract]   [Full Text] [Related]  

  • 17. Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of adenosine 5'-diphosphate with aromatic residue(s).
    Vasák M; Nagayama K; Wüthrich K; Mertens ML; Kägi JH
    Biochemistry; 1979 Nov; 18(23):5050-5. PubMed ID: 497170
    [No Abstract]   [Full Text] [Related]  

  • 18. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of creatine kinase by chromium nucleotides.
    Schimerlik MI; Cleland WW
    J Biol Chem; 1973 Dec; 248(24):8418-23. PubMed ID: 4797017
    [No Abstract]   [Full Text] [Related]  

  • 20. Creatine kinase: structure-activity relationships.
    Kenyon GL; Reed GH
    Adv Enzymol Relat Areas Mol Biol; 1983; 54():367-426. PubMed ID: 6342340
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.