BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7306510)

  • 1. Effects of pH on horse liver aldehyde dehydrogenase: alterations in metal ion activation, number of functioning active sites, and hydrolysis of the acyl intermediate.
    Takahashi K; Weiner H; Filmer DL
    Biochemistry; 1981 Oct; 20(21):6225-30. PubMed ID: 7306510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide adenine dinucleotide activation of the esterase reaction of horse liver aldehyde dehydrogenase.
    Takahashi K; Weiner H
    Biochemistry; 1981 May; 20(10):2720-6. PubMed ID: 7248246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the magnesium ion activation of the catalytic activity of horse liver aldehyde dehydrogenase.
    Takahashi K; Brown CS; Weiner H
    Adv Exp Med Biol; 1980; 132():181-8. PubMed ID: 7424705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Mg2+ with human liver aldehyde dehydrogenase. I. Species difference in the mitochondrial isozyme.
    Vallari RC; Pietruszko R
    J Biol Chem; 1984 Apr; 259(8):4922-6. PubMed ID: 6425280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of magnesium and calcium on mitochondrial and cytosolic liver aldehyde dehydrogenases.
    Weiner H; Takahashi K
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():109-12. PubMed ID: 6634825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of horse liver mitochondrial aldehyde dehydrogenase by disulfiram. Evidence that disulfiram is not an active-site-directed reagent.
    Sanny CG; Weiner H
    Biochem J; 1987 Mar; 242(2):499-503. PubMed ID: 3593264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation.
    Cathala G; Brunel C
    J Biol Chem; 1975 Aug; 250(15):6046-53. PubMed ID: 238994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium stimulation of catalytic activity of horse liver aldehyde dehydrogenase. Changes in molecular weight and catalytic sites.
    Takahashi K; Weiner H
    J Biol Chem; 1980 Sep; 255(17):8206-9. PubMed ID: 7410360
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of Mg2+ with human liver aldehyde dehydrogenase. II. Mechanism and site of interaction.
    Vallari RC; Pietruszko R
    J Biol Chem; 1984 Apr; 259(8):4927-33. PubMed ID: 6715329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of pH-gradient ion-exchange chromatography to separate sheep liver cytoplasmic aldehyde dehydrogenase from mitochondrial enzyme contamination, and observations on the interaction between the pure cytoplasmic enzyme and disulfiram.
    Dickinson FM; Hart GJ; Kitson TM
    Biochem J; 1981 Dec; 199(3):573-9. PubMed ID: 7340819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate-limiting steps for the esterase and dehydrogenase reaction catalyzed by horse liver aldehyde dehydrogenase.
    Weiner H; Hu JH; Sanny CG
    J Biol Chem; 1976 Jul; 251(13):3853-5. PubMed ID: 945270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton release during the pre-steady-state oxidation of aldehydes by aldehyde dehydrogenase. Evidence for a rate-limiting conformational change.
    Bennett AF; Buckley PD; Blackwell LF
    Biochemistry; 1982 Aug; 21(18):4407-13. PubMed ID: 6289881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two distinct active sites on aldehyde dehydrogenase.
    Tu GC; Weiner H
    J Biol Chem; 1988 Jan; 263(3):1218-22. PubMed ID: 3335541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in the stoichiometry of the functioning active sites of horse liver aldehyde dehydrogenase in the presence of magnesium ions.
    Takahashi K; Weiner H; Hu JH
    Arch Biochem Biophys; 1980 Dec; 205(2):571-8. PubMed ID: 7469426
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalysis of dehydrogenation of 4-trans-(N,N-dimethylamino)cinnamaldehyde by aldehyde dehydrogenase.
    Pietruszko R; Lehmann T; Dryjanski M; Abriola DP; Ambroziak W
    Chem Biol Interact; 2001 Jan; 130-132(1-3):103-14. PubMed ID: 11306035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reinvestigation of the purity, isoelectric points and some kinetic properties of the aldehyde dehydrogenases from sheep liver.
    Agnew KE; Bennett AF; Crow KE; Greenway RM; Blackwell LF; Buckley PD
    Eur J Biochem; 1981 Sep; 119(1):79-84. PubMed ID: 7341249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme.
    Schimerlik MI; Cleland WW
    Biochemistry; 1977 Feb; 16(4):576-83. PubMed ID: 13821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of the F1 isozyme of horse liver aldehyde dehydrogenase.
    Eckfeldt JH; Yonetani T
    Arch Biochem Biophys; 1976 Mar; 173(1):273-81. PubMed ID: 4028
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural relationships among aldehyde dehydrogenases.
    Hempel J; Von Bahr-Lindström H; Jörnvall H
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():117-21. PubMed ID: 6634827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the cysteine residue in the active site of horse liver mitochondrial aldehyde dehydrogenase.
    Tu GC; Weiner H
    J Biol Chem; 1988 Jan; 263(3):1212-7. PubMed ID: 3335540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.