These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7306570)

  • 1. Crystalline actin tubes. III. The interaction of scandium and yttrium with skeletal muscle actin.
    Barden JA; Curmi PM; Dos Remedios CG
    Biochim Biophys Acta; 1981 Nov; 671(1):25-32. PubMed ID: 7306570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline actin tubes. V. The effect of Th4+ on actin and the role of ionic charge in tube formation.
    Barden JA; Curmi PM; dos Remedios CG
    J Biochem; 1982 Oct; 92(4):1319-23. PubMed ID: 7174647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton nuclear magnetic resonance and electron paramagnetic resonance studies on skeletal muscle actin indicate that the metal and nucleotide binding sites are separate.
    Barden JA; Cooke R; Wright PE; dos Remedios CG
    Biochemistry; 1980 Dec; 19(25):5912-6. PubMed ID: 6257295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystalline actin tubes. I. Is the conformation of the lanthanide-induced actin tube monomer more like F-actin than G-actin?
    Barden JA; dos Remedios CG
    Biochim Biophys Acta; 1980 Jul; 624(1):163-73. PubMed ID: 6447516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline actin tubes. II. The effect of various lanthanide ions on actin tube formation.
    dos Remedios CG; Barden JA; Valois AA
    Biochim Biophys Acta; 1980 Jul; 624(1):174-86. PubMed ID: 6893286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin tube formation: effects of variations in commonly used solvent conditions.
    Curmi PM; Barden JA; Dos Remedios CG
    J Muscle Res Cell Motil; 1984 Aug; 5(4):423-30. PubMed ID: 6480817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first step in the polymerisation of actin.
    Rouayrenc JF; Travers F
    Eur J Biochem; 1981 May; 116(1):73-7. PubMed ID: 6454574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the non-filamentous aggregation of actin induced by lanthanide ions.
    Barden JA; Dos Remedios CG
    Biochim Biophys Acta; 1978 Dec; 537(2):417-27. PubMed ID: 153152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy.
    Barden JA; dos Remedios CG
    J Biochem; 1984 Sep; 96(3):913-21. PubMed ID: 6501270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium regulation of the beta-receptor-adenylate cyclase complex. II. Sc3+ as a Mg2 antagonist.
    Maguire ME
    Mol Pharmacol; 1982 Sep; 22(2):274-80. PubMed ID: 6292689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexes of mycobactin from Mycobacterium smegmatis with scandium, yttrium and lanthanum.
    Andres Y; MacCordick HJ; Hubert JC
    Biol Met; 1991; 4(4):207-10. PubMed ID: 1777355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationalization of the strength of metal binding to human serum transferrin.
    Li H; Sadler PJ; Sun H
    Eur J Biochem; 1996 Dec; 242(2):387-93. PubMed ID: 8973657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles.
    Lo AY; Sudarsan V; Sivakumar S; van Veggel F; Schurko RW
    J Am Chem Soc; 2007 Apr; 129(15):4687-700. PubMed ID: 17385858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of transiently expressed low- and high-voltage-activated calcium channels by trivalent metal cations.
    Beedle AM; Hamid J; Zamponi GW
    J Membr Biol; 2002 Jun; 187(3):225-38. PubMed ID: 12163980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in actin resulting from Ca2+/Mg2+ exchange as detected by proton NMR spectroscopy.
    Barden JA; dos Remedios CG
    Eur J Biochem; 1985 Jan; 146(1):5-8. PubMed ID: 3967655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin monomer conformation under polymerizing conditions studied by proton nuclear magnetic resonance and circular dichroism spectroscopy.
    Barden JA; Wu CS; Dos Remedios CG
    Biochim Biophys Acta; 1983 Oct; 748(2):230-5. PubMed ID: 6626555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile segments in rabbit skeletal muscle F-actin detected by 1H nuclear magnetic resonance spectroscopy.
    Slósarek G; Heintz D; Kalbitzer HR
    FEBS Lett; 1994 Sep; 351(3):405-10. PubMed ID: 8082804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A re-investigation of actin monomer conformation under polymerizing conditions based on rates of enzymatic digestion and ultraviolet difference spectroscopy.
    Fisher AJ; Curmi PM; Barden JA; Dos Remedios CG
    Biochim Biophys Acta; 1983 Oct; 748(2):220-9. PubMed ID: 6626554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.