These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7306589)

  • 41. Isolation and structure of a rhodopsin gene from D. melanogaster.
    Zuker CS; Cowman AF; Rubin GM
    Cell; 1985 Apr; 40(4):851-8. PubMed ID: 2580638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and nucleotide sequence of the gene encoding human rhodopsin.
    Nathans J; Hogness DS
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4851-5. PubMed ID: 6589631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino acid sequence adjacent to a sulfhydryl group exposed on illumination of bovine rhodopsin.
    Khatami M; Angeletti RH; Rockey JH
    J Biol Chem; 1981 Oct; 256(19):9826-9. PubMed ID: 7275981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin.
    Hicks D; Molday RS
    Exp Eye Res; 1986 Jan; 42(1):55-71. PubMed ID: 2420630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein).
    Stoffel W; Hillen H; Schröder W; Deutzmann R
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1455-66. PubMed ID: 6642431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The primary structure of iodopsin, a chicken red-sensitive cone pigment.
    Kuwata O; Imamoto Y; Okano T; Kokame K; Kojima D; Matsumoto H; Morodome A; Fukada Y; Shichida Y; Yasuda K
    FEBS Lett; 1990 Oct; 272(1-2):128-32. PubMed ID: 2226824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wavelength modulation by molecular environment in visual pigments.
    Motoyama H; Hamanaka T; Kitô Y; Morita H; Guerette L; Abran D; Boucher F
    Biochim Biophys Acta; 1986 Sep; 861(1):9-15. PubMed ID: 3756156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation at sites near rhodopsin's carboxyl-terminus regulates light initiated cGMP hydrolysis.
    Miller JL; Dratz EA
    Vision Res; 1984; 24(11):1509-21. PubMed ID: 6099932
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Primary structure of C-terminal functional sites in ovine rhodopsin.
    Findlay JB; Brett M; Pappin DJ
    Nature; 1981 Sep; 293(5830):314-7. PubMed ID: 7278988
    [No Abstract]   [Full Text] [Related]  

  • 50. Tryptophan in bovine rhodopsin: its content, spectral properties and environment.
    Rafferty CN; Muellenberg CG; Shichi H
    Biochemistry; 1980 May; 19(10):2145-51. PubMed ID: 7378353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation.
    Phillips WJ; Cerione RA
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):351-7. PubMed ID: 8172594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Target size analysis of rhodopsin in retinal rod disk membranes.
    Hughes SM; Harper G; Brand MD
    Biochem Biophys Res Commun; 1984 Jul; 122(1):56-61. PubMed ID: 6234896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal destabilization of rhodopsin and opsin by proteolytic cleavage in bovine rod outer segment disk membranes.
    Landin JS; Katragadda M; Albert AD
    Biochemistry; 2001 Sep; 40(37):11176-83. PubMed ID: 11551216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Topology of bovine rhodopsin in discal membranes of photoreceptors].
    Pellicone C; Nullans G; Leininger D; Virmaux N
    C R Seances Acad Sci III; 1983 Jan; 296(1):7-10. PubMed ID: 6404513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Limited proteolysis of bovine pepsin].
    Revina LP; Baratova LA; Belianova LP; Stepanov VM
    Biokhimiia; 1977 May; 42(5):872-6. PubMed ID: 329899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Labelling of the cytoplasmic domains of ovine rhodopsin with hydrophilic chemical probes.
    Barclay PL; Findlay JB
    Biochem J; 1984 May; 220(1):75-84. PubMed ID: 6378185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteinase-treated photoreceptor discs. Photoelectric activity of the partially-digested rhodopsin and membrane orientation.
    Bayramashvili DI; Drachev AL; Drachev LA; Kaulen AD; Kudelin AB; Martynov VI; Skulachev VP
    Eur J Biochem; 1984 Aug; 142(3):583-90. PubMed ID: 6468381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.