These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 7306589)
61. Antisera to synthetic peptides of bovine rhodopsin: use as site-specific probes of disc membrane changes in retinal dystrophic dogs. Takemoto DJ; Spooner B; Takemoto LJ Biochem Biophys Res Commun; 1985 Oct; 132(1):438-44. PubMed ID: 3864443 [TBL] [Abstract][Full Text] [Related]
62. [Temperature decolorization of the rhodopsin of bulls and Theragra chalcogramma fish]. Tiurin VA; Korchagin VP; Shukoliukov SA; Fedosov IuV Zh Evol Biokhim Fiziol; 1977; 13(1):18-23. PubMed ID: 868374 [TBL] [Abstract][Full Text] [Related]
63. Structure of the third cytoplasmic loop of bovine rhodopsin. Yeagle PL; Alderfer JL; Albert AD Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070 [TBL] [Abstract][Full Text] [Related]
64. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments). Kosower EM Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1076-80. PubMed ID: 3422479 [TBL] [Abstract][Full Text] [Related]
65. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Yao VJ; Spudich JL Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418 [TBL] [Abstract][Full Text] [Related]
66. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C; Kühn H; Chabre M Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431 [TBL] [Abstract][Full Text] [Related]
67. Isolation and sequence determination of the chicken rhodopsin gene. Takao M; Yasui A; Tokunaga F Vision Res; 1988; 28(4):471-80. PubMed ID: 3195056 [TBL] [Abstract][Full Text] [Related]
68. The primary structure of the phosphatidylcholine-exchange protein from bovine liver. Isolation and characterization of the staphylococcal protease peptides and the amino-acid sequence of the N-terminal half (residues 1--122). Moonen P; Akeroyd R; Westerman J; Puijk WC; Smits P; Wirtz KW Eur J Biochem; 1980 May; 106(1):279-90. PubMed ID: 7042332 [TBL] [Abstract][Full Text] [Related]
69. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin. Brown NG; Fowles C; Sharma R; Akhtar M Eur J Biochem; 1992 Sep; 208(3):659-67. PubMed ID: 1396673 [TBL] [Abstract][Full Text] [Related]
70. Effects of carboxyl-terminal truncation on the stability and G protein-coupling activity of bovine rhodopsin. Weiss ER; Osawa S; Shi W; Dickerson CD Biochemistry; 1994 Jun; 33(24):7587-93. PubMed ID: 8011624 [TBL] [Abstract][Full Text] [Related]
71. Covalent modification of rhodopsin with imidoesters: evidence for transmembrane arragnement of rhodopsin in rod outer segment disk membranes. Nemes PP; Miljanich GP; White DL; Dratz EA Biochemistry; 1980 May; 19(10):2067-74. PubMed ID: 7378347 [TBL] [Abstract][Full Text] [Related]
72. Circular dichroism, optical rotatory dispersion, and absorption studies on the conformation of bovine rhodopsin iw situ and solubilized with detergent. Rafferty CN; Cassim JY; McConnell DG Biophys Struct Mech; 1977 Mar; 2(4):227-320. PubMed ID: 843587 [TBL] [Abstract][Full Text] [Related]
73. Topography of rhodopsin in rod outer segment disk membranes. Photochemical labeling with N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonate. Mas MT; Wang JK; Hargrave PA Biochemistry; 1980 Feb; 19(4):684-91. PubMed ID: 7370104 [TBL] [Abstract][Full Text] [Related]
74. [Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane]. Ovchinnikov IuA; Abdulaev NG; Feĭgina MIu; Artamonov ID; Bogachuk AS Bioorg Khim; 1983 Oct; 9(10):1331-40. PubMed ID: 6679757 [TBL] [Abstract][Full Text] [Related]
75. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Karnik SS; Sakmar TP; Chen HB; Khorana HG Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735 [TBL] [Abstract][Full Text] [Related]
76. The conformation of membrane-bound and detergent-solubilised bovine rhodopsin. A comparative hydrogen-isotope exchange study. Osborne HB; Nabedryk-Viala E Eur J Biochem; 1978 Aug; 89(1):81-8. PubMed ID: 699918 [TBL] [Abstract][Full Text] [Related]
77. Function of the farnesyl moiety in visual signalling. McCarthy NE; Akhtar M Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415 [TBL] [Abstract][Full Text] [Related]
78. Cloning and nucleotide sequence of cDNA for retinochrome, retinal photoisomerase from the squid retina. Hara-Nishimura I; Matsumoto T; Mori H; Nishimura M; Hara R; Hara T FEBS Lett; 1990 Oct; 271(1-2):106-10. PubMed ID: 2226795 [TBL] [Abstract][Full Text] [Related]
79. Deoxylysolecithin and a new biphenyl detergent as solubilizing agents for bovine rhodopsin. Functional test by formation of metarhodopsin II and binding of G-protein. Schleicher A; Franke R; Hofmann KP; Finkelmann H; Welte W Biochemistry; 1987 Sep; 26(18):5908-16. PubMed ID: 3118952 [TBL] [Abstract][Full Text] [Related]
80. Organization of rhodopsin in photoreceptor membranes. 1. Proteolysis of bovine rhodopsin in native membranes and the distribution of sulfhydryl groups in the fragments. Fung BK; Hubbell WL Biochemistry; 1978 Oct; 17(21):4396-402. PubMed ID: 718846 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]