BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 7306593)

  • 21. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity.
    Dunigan DD; Waters SB; Owen TC
    Biotechniques; 1995 Oct; 19(4):640-9. PubMed ID: 8777059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.
    Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A
    J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of spinach D-glyceraldehyde 3-phosphate: NADP+ oxidoreductase (nonphosphorylating) by adenylate compounds: the effect of dead-end inhibitors on a steady state random reaction mechanism.
    Trost P; Pupillo P
    Arch Biochem Biophys; 1993 Oct; 306(1):76-82. PubMed ID: 8215424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glyceraldehyde-3-phosphate dehydrogenase of Scenedesmus obliquus. Effects of dithiothreitol and nucleotide on coenzyme specificity.
    O'Brien MJ; Easterby JS; Powls R
    Biochim Biophys Acta; 1977 Apr; 481(2):348-58. PubMed ID: 15603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The reduction-oxidation status may influence the degradation of glyceraldehyde-3-phosphate dehydrogenase.
    Knecht E; Roche E
    FEBS Lett; 1986 Oct; 206(2):339-42. PubMed ID: 3530813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the interaction of glyceraldehyde-3-phosphate dehydrogenase with DNA.
    Perucho M; Salas J; Salas ML
    Biochim Biophys Acta; 1980 Feb; 606(2):181-95. PubMed ID: 7357001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies on microsomal glucose dehydrogenase in rat liver.
    Endou H; Neuhoff V
    Hoppe Seylers Z Physiol Chem; 1975 Sep; 356(9):1381-96. PubMed ID: 240770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of the NAD-preferring glucose 6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Ragunathan S; Levy HR
    Arch Biochem Biophys; 1994 May; 310(2):360-6. PubMed ID: 8179320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorus-31 nuclear magnetic resonance studies on coenzyme binding and specificity in glyceraldehyde-3-phosphate dehydrogenase.
    Eyschen J; Vitoux B; Rahuel-Clermont S; Marraud M; Branlant G; Cung MT
    Biochemistry; 1996 May; 35(19):6064-72. PubMed ID: 8634248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP+). Reactivity of essential cysteine residues in holo- and apoenzyme.
    Ferri G; Iadarola P; Zapponi MC
    Biochim Biophys Acta; 1981 Aug; 660(2):325-32. PubMed ID: 7284406
    [No Abstract]   [Full Text] [Related]  

  • 37. Inhibition of bovine heart NAD-specific isocitrate dehydrogenase by reduced pyridine nucleotides: modulation of inhibition by ADP, NAD+, Ca2+, citrate, and isocitrate.
    Gabriel JL; Plaut GW
    Biochemistry; 1984 Jun; 23(12):2773-8. PubMed ID: 6466615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD.
    Falini G; Fermani S; Ripamonti A; Sabatino P; Sparla F; Pupillo P; Trost P
    Biochemistry; 2003 Apr; 42(16):4631-9. PubMed ID: 12705826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential binding of NAD+ to acyl glyceraldehyde-3-phosphate dehydrogenase and its role in the acyl group transfer reaction.
    Malhotra OP
    Indian J Biochem Biophys; 1991 Aug; 28(4):257-62. PubMed ID: 1752628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Algal glyceraldehyde-3-phosphate dehydrogenases. Conversion of the NADH-linked enzyme of Scenedesmus obliquus into a form which preferentially uses NADPH as coenzyme.
    O'Brien MJ; Easterby JS; Powls R
    Biochim Biophys Acta; 1976 Nov; 449(2):209-23. PubMed ID: 10983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.