These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7306695)

  • 41. Human blood oscillating axially in a tube.
    Richardson PD; Lazzara S
    Biorheology; 1983; 20(3):317-26. PubMed ID: 6414549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of red cells on heat-conduction in blood.
    Ríha P
    Biorheology; 1976 Jun; 13(3):185-9. PubMed ID: 953254
    [No Abstract]   [Full Text] [Related]  

  • 43. Secondary effects in cone and plate viscometers.
    Heuser G
    Biorheology; 1978; 15(3-4):311-20. PubMed ID: 737331
    [No Abstract]   [Full Text] [Related]  

  • 44. Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation.
    Klose HJ; Volger E; Brechtelsbauer H; Heinich L; Schmid-Schönbein H
    Pflugers Arch; 1972; 333(2):126-39. PubMed ID: 4538028
    [No Abstract]   [Full Text] [Related]  

  • 45. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complex viscosity of bovine red blood cells in suspensions.
    Sakanishi A; Ferry JD
    Biorheology; 1983; 20(5):519-29. PubMed ID: 6203571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thin film blood flow in rectangular channels with application to artificial kidney haemodynamics.
    Gaylor JD
    J Biomech; 1973 May; 6(3):241-51. PubMed ID: 4706934
    [No Abstract]   [Full Text] [Related]  

  • 48. Tube viscometry of dense red cells suspensions in plasma at very low flow rates.
    Jacobs HR
    Biorheology; 1971 Dec; 8(2):85-9. PubMed ID: 5143788
    [No Abstract]   [Full Text] [Related]  

  • 49. Influence of deformability of human red cells upon blood viscosity.
    Schmid-Schönbein H; Wells R; Goldstone J
    Circ Res; 1969 Aug; 25(2):131-43. PubMed ID: 5806159
    [No Abstract]   [Full Text] [Related]  

  • 50. Comparative interest of two coaxial viscometers: ecktacytometer and low shear 30.
    Adjizian JC; Droulle C; Osterman G; Pignon B; Potron G
    Biorheology Suppl; 1984; 1():95-7. PubMed ID: 6592005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigations of viscosity at low rates of shear: effects of variations in the concentration and character of the red cells and in the composition of the suspending medium.
    Gregersen MI; Chien S; Peric B; Taylor H
    Bibl Anat; 1965; 7():383-4. PubMed ID: 5860762
    [No Abstract]   [Full Text] [Related]  

  • 52. Hemorheological investigations in patients with polycystic kidney disease.
    Shand BI
    Clin Hemorheol Microcirc; 2002; 27(1):13-6. PubMed ID: 12237486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rheological characteristics of blood through the menstrual cycle.
    Brooks DE; Easthope PL
    Biorheology; 1981; 18(3-6):485-92. PubMed ID: 7326389
    [No Abstract]   [Full Text] [Related]  

  • 55. Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion in flow.
    Schmid-Schönbein H; Volger E; Klose HJ
    Pflugers Arch; 1972; 333(2):140-55. PubMed ID: 5065509
    [No Abstract]   [Full Text] [Related]  

  • 56. Quasi-thermodynamic interpretation of the behavior of formed elements in blood flow.
    Mahalingam R; Poon TK
    Biorheology; 1973 Sep; 10(3):329-41. PubMed ID: 4772007
    [No Abstract]   [Full Text] [Related]  

  • 57. Quantitative study of fibrinogen molecules' contribution to the inter-red cells connections in selected clinical groups of stroke patients.
    Kowal P
    Clin Hemorheol Microcirc; 1998 Apr; 18(1):37-41. PubMed ID: 9653584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of flow geometry on blood viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 2006; 43(6):729-46. PubMed ID: 17148856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The role of mathematical models in microhemorheology (author's transl)].
    Gross JF; Gersten K
    Arzneimittelforschung; 1981; 31(11a):1989-95. PubMed ID: 7199286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.