BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7306803)

  • 1. Electrophysiological study of the maturation of auditory responses from the inner ear of the chick.
    Rebillard G; Rubel EW
    Brain Res; 1981 Dec; 229(1):15-23. PubMed ID: 7306803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the cat peripheral auditory system: input-output functions of cochlear potentials.
    Moore DR
    Brain Res; 1981 Aug; 219(1):29-44. PubMed ID: 6266603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold sensitivity and frequency selectivity measured with round window whole nerve action potentials in the awake, restrained chinchilla.
    Spagnoli SD; Saunders JC
    Otolaryngol Head Neck Surg; 1987 Jan; 96(1):99-105. PubMed ID: 3118303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear dysfunction in the jerker mouse.
    Steel KP; Bock GR
    Behav Neurosci; 1983 Jun; 97(3):381-91. PubMed ID: 6871029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The maturation of frequency selectivity in C57BL/6J mice studied with auditory evoked response tuning curves.
    Saunders JC; Dolgin KG; Lowry LD
    Brain Res; 1980 Apr; 187(1):69-79. PubMed ID: 7357477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sympathetic stimulation on the round window compound action potential in the rat.
    Lee AH; Møller AR
    Hear Res; 1985; 19(2):127-34. PubMed ID: 2865241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some otological differences between pigmented and albino-type guinea pigs.
    Harrison RV; Palmer A; Aran JM
    Arch Otorhinolaryngol; 1984; 240(3):271-5. PubMed ID: 6487138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings.
    Shnerson A; Pujol R
    Brain Res; 1981 Aug; 254(1):65-75. PubMed ID: 7272773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latency in the ascending auditory pathway determined using continuous sounds: comparison between transient and envelope latency.
    Møller AR
    Brain Res; 1981 Feb; 207(1):184-8. PubMed ID: 6258729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear threshold assessment using tone-derived action potentials.
    Salt AN; Vora AR
    Audiology; 1990; 29(3):135-45. PubMed ID: 2383213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the auditory frequency following response during visual attention.
    Oatman LC; Anderson BW
    Electroencephalogr Clin Neurophysiol; 1980 Aug; 49(3-4):314-22. PubMed ID: 6158407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-field cochlear microphonic responses to continuous pure tones recorded from the scalps of cats.
    Schwent VL; Jewett DL
    Electroencephalogr Clin Neurophysiol; 1980 May; 48(5):527-34. PubMed ID: 6153961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window responses.
    Henry KR; Chole RA
    Acta Otolaryngol; 1979; 87(1-2):61-8. PubMed ID: 760378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of cochlear potentials in rats.
    Uziel A; Romand R; Marot M
    Audiology; 1981; 20(2):89-100. PubMed ID: 7224981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of hearing in the chicken embryo.
    Jones TA; Jones SM; Paggett KC
    J Neurophysiol; 2006 Jul; 96(1):128-41. PubMed ID: 16598067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory nerve neurophonic tuning curves produced by masking of round window responses.
    Henry KR
    Hear Res; 1997 Feb; 104(1-2):167-76. PubMed ID: 9119760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenic changes in cochlear characteristic frequency at a basal turn location as reflected in the summating potential.
    Yancey C; Dallos P
    Hear Res; 1985 May; 18(2):189-95. PubMed ID: 4044420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural delay in the ascending auditory pathway.
    Møller AR
    Exp Brain Res; 1981; 43(1):93-100. PubMed ID: 6265262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency acoustic modulations generated by the high-frequency portion of the cochlea, noninvasively recorded from the scalp of mice (Mus musculus).
    Henry KR
    J Comp Psychol; 2000 Mar; 114(1):22-35. PubMed ID: 10739309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.