BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7306882)

  • 1. Phosphoenolpyruvate-dependent sugar phosphotransferase activity in Megasphaera elsdenii.
    Dills SS; Lee CA; Saier MH
    Can J Microbiol; 1981 Sep; 27(9):949-52. PubMed ID: 7306882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098.
    Taranto MP; Font de Valdez G; Perez-Martinez G
    FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of phosphoenolpyruvate:fructose phosphotransferase systems in three Streptomyces species.
    Titgemeyer F; Walkenhorst J; Reizer J; Stuiver MH; Cui X; Saier MH
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():51-8. PubMed ID: 7894719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a phosphoenolpyruvate:fructose 1-phosphotransferase system in Azospirillum brasilense.
    Gupta KD; Ghosh S
    J Bacteriol; 1984 Dec; 160(3):1204-6. PubMed ID: 6501230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. The coupling between transport and phosphorylation in inside-out vesicles.
    Lolkema JS; Robillard GT
    Eur J Biochem; 1985 Feb; 147(1):69-75. PubMed ID: 3871694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium.
    Scholte BJ; Postma PW
    Eur J Biochem; 1981; 114(1):51-8. PubMed ID: 7011803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis.
    Reizer J; Novotny MJ; Stuiver I; Saier MH
    J Bacteriol; 1984 Jul; 159(1):243-50. PubMed ID: 6429122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G; Frenette M; Vadeboncoeur C
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida.
    Binet MR; Bouvet OM
    Res Microbiol; 1998 Feb; 149(2):83-94. PubMed ID: 9766212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
    Kornberg HL; Lambourne LT; Sproul AA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose transport by Escherichia coli.
    Kornberg HL
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):505-13. PubMed ID: 1970653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes.
    Mitchell WJ; Reizer J; Herring C; Hoischen C; Saier MH
    J Bacteriol; 1993 May; 175(9):2758-61. PubMed ID: 8478337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system.
    Bourassa S; Vadeboncoeur C
    J Gen Microbiol; 1992 Apr; 138(4):769-77. PubMed ID: 1534118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate.
    Hino T; Kuroda S
    Appl Environ Microbiol; 1993 Jan; 59(1):255-9. PubMed ID: 8439152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose-specific phosphoenolpyruvate dependent phosphotransferase system of Escherichia coli: its alterations and adenylate cyclase activity.
    Gershanovitch VN; Bolshakova TN; Molchanova ML; Umyarov AM; Dobrynina OYu ; Grigorenko YuA ; Erlagaeva RS
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):125-33. PubMed ID: 2699243
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.