These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7307051)

  • 21. Cytological evidence for different types of cerebrospinal fluid-contacting subependymal cells in the preoptic and infundibular recesses of the frog.
    Nakai Y; Ochiai H; Shioda S; Ochi J
    Cell Tissue Res; 1977 Jan; 176(3):317-34. PubMed ID: 832300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light-and electron microscopical study.
    Schürmann FW; Erber J
    Neuroscience; 1990; 38(3):797-807. PubMed ID: 2270144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of dopamine-immunoreactive neuronal perikarya and fibres in the brain of a teleost, Gasterosteus aculeatus L. comparison with tyrosine hydroxylase- and dopamine-beta-hydroxylase-immunoreactive neurons.
    Ekström P; Honkanen T; Steinbusch HW
    J Chem Neuroanat; 1990; 3(4):233-60. PubMed ID: 1975745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryostat technique for central nervous system histofluorescence.
    Watson SJ; Ellison JP
    Histochemistry; 1976-1977; 50(2):119-27. PubMed ID: 1053221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The aminergic system in the brain of Blennius incognitus (Bath 1968) (Teleostei, Perciformes).
    Kotrschal K; Adam H
    Cell Tissue Res; 1983; 229(2):403-9. PubMed ID: 6850753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of an unusual catecholamine-containing cell type in the toad hypothalamus. A correlated ultrastructural and fluorescence histochemical study.
    McKenna OC; Rosenbluth J
    J Cell Biol; 1971 Mar; 48(3):650-72. PubMed ID: 4100487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Light and electron microscopic studies of the vascular sac and of the nervus and tractus sacci vasculosi].
    Vigh B; Vigh-Teichmann I; Aros B; Varjassy P
    Z Zellforsch Mikrosk Anat; 1972; 129(4):508-22. PubMed ID: 5042250
    [No Abstract]   [Full Text] [Related]  

  • 28. [Distribution of monoamines in the hypothalamus and hypophysis of carp, Cyprinus carpio].
    Konstantinova MS
    Zh Evol Biokhim Fiziol; 1976; 12(2):192-4. PubMed ID: 941576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of monoamine fluorescence in the stomatogastric nervous system of lobsters.
    Kushner PD; Maynard EA
    Brain Res; 1977 Jun; 129(1):13-28. PubMed ID: 871924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake of monoamines into central neurones and the blood-brain barrier in the infant rat.
    Loizou LA
    Br J Pharmacol; 1970 Dec; 40(4):800-13. PubMed ID: 5495178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histochemical visualization of peripheral and central adrenergic neurones.
    Livett BG
    Br Med Bull; 1973 May; 29(2):93-9. PubMed ID: 4584706
    [No Abstract]   [Full Text] [Related]  

  • 32. Cerebrospinal fluid-contacting neurons, ciliated perikarya and "peptidergic" synapses in the magnocellular preoptic nucleus of teleostean fishes.
    Vigh-Teichmann I; Vigh B; Aros B
    Cell Tissue Res; 1976 Jan; 165(3):397-413. PubMed ID: 174818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine structure and vascular supply of the median eminence (ME) in Acipenser ruthenus (Chondrostei).
    Kotrschal K; Lametschwandtner A; Adam H
    J Hirnforsch; 1985; 26(3):333-51. PubMed ID: 4031490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monoamine-containing neurons and their projections in the brain (supraoesophageal ganglion) of cockroaches. AN aldehyde fluorescence study.
    Klemm N
    Cell Tissue Res; 1983; 229(2):379-402. PubMed ID: 6342791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebrospinal fluid-contacting neurons in the paraventricular organ and in the spinal cord of the quail embryo: a fluorescence-histochemical study.
    Guglielmone R
    Cell Tissue Res; 1995 Jul; 281(1):163-8. PubMed ID: 7621520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fluorescence histochemical method for the demonstration of central catecholamine neurons in young embryonic tissues.
    Woerly S; Marchand R
    Brain Res; 1989 Aug; 495(2):377-81. PubMed ID: 2765938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy.
    Parent A; Dube L; Braford MR; Northcutt RG
    J Comp Neurol; 1978 Dec; 182(3):495-516. PubMed ID: 721968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Electron microscopical investigation on the cytoarchitecture of the brain of Branchiostoma lanceolatum].
    Meves A
    Z Zellforsch Mikrosk Anat; 1973 Jun; 139(4):511-32. PubMed ID: 4724529
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of calcium on the histochemical distribution and intensity of biogenic amine-containing neurons in the mouse brain.
    Sutoo D; Akiyama K
    Neurosci Lett; 1986 Aug; 69(1):98-103. PubMed ID: 3748470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat.
    Poitras D; Parent A
    J Comp Neurol; 1978 Jun; 179(4):699-717. PubMed ID: 641232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.