These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 7309354)
1. Carbon 13 nuclear magnetic resonance studies on formaldehyde reactions with polyfunctional amino-acids. Tome D; Naulet N Int J Pept Protein Res; 1981 Apr; 17(4):501-7. PubMed ID: 7309354 [TBL] [Abstract][Full Text] [Related]
2. Reevaluation of the reaction of formaldehyde at low concentration with amino acids. Kitamoto Y; Maeda H J Biochem; 1980 May; 87(5):1519-30. PubMed ID: 7390997 [TBL] [Abstract][Full Text] [Related]
3. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Bolton JL; Turnipseed SB; Thompson JA Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752 [TBL] [Abstract][Full Text] [Related]
4. Cross-linking of amino acids by formaldehyde. Preparation and 13C NMR spectra of model compounds. Kelly DP; Dewar MK; Johns RB; Wei-Let S; Yates JF Adv Exp Med Biol; 1977; 86A():641-7. PubMed ID: 562613 [TBL] [Abstract][Full Text] [Related]
5. Formaldehyde metabolism by Escherichia coli. Detection by in vivo 13C NMR spectroscopy of S-(hydroxymethyl)glutathione as a transient intracellular intermediate. Mason RP; Sanders JK; Crawford A; Hunter BK Biochemistry; 1986 Aug; 25(16):4504-7. PubMed ID: 3533139 [TBL] [Abstract][Full Text] [Related]
6. Reactions of hydrated formaldehyde in nasal mucus. Priha E; Liesivuori J; Santa H; Laatikainen R Chemosphere; 1996 Mar; 32(6):1077-82. PubMed ID: 8920592 [TBL] [Abstract][Full Text] [Related]
7. Nuclear magnetic resonance studies on covalent modification of amino acids thiol and amino residues by monofunctional aryl 13C-isocyanates, models of skin and respiratory sensitizers: transformation of thiocarbamates into urea adducts. Fleischel O; Giménez-Arnau E; Lepoittevin JP Chem Res Toxicol; 2009 Jun; 22(6):1106-15. PubMed ID: 19405514 [TBL] [Abstract][Full Text] [Related]
8. THE ENZYMIC CONDENSATION OF A THIOL ESTER--TYPE CARBOXYL-ACTIVATED ACYLAMINO ACID WITH AN AMINO ACID AMIDE TO FORM A PEPTIDE. METRIONE RM; JOHNSTON RB Biochemistry; 1964 Apr; 3():482-5. PubMed ID: 14188161 [No Abstract] [Full Text] [Related]
9. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Kawulka KE; Sprules T; Diaper CM; Whittal RM; McKay RT; Mercier P; Zuber P; Vederas JC Biochemistry; 2004 Mar; 43(12):3385-95. PubMed ID: 15035610 [TBL] [Abstract][Full Text] [Related]
10. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine. Hayden PJ; Yang Y; Ward AJ; Dulik DM; McCann DJ; Stevens JL Biochemistry; 1991 Jun; 30(24):5935-43. PubMed ID: 1904276 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of antibacterial formaldehyde delivery from noxythiolin and other 'masked-formaldehyde' compounds. Gidley MJ; Sanders JK J Pharm Pharmacol; 1983 Nov; 35(11):712-7. PubMed ID: 6139451 [TBL] [Abstract][Full Text] [Related]
12. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. McGhee JD; von Hippel PH Biochemistry; 1975 Mar; 14(6):1281-96. PubMed ID: 235285 [TBL] [Abstract][Full Text] [Related]
13. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues. Löhr F; Rogov VV; Shi M; Bernhard F; Dötsch V J Biomol NMR; 2005 Aug; 32(4):309-28. PubMed ID: 16211484 [TBL] [Abstract][Full Text] [Related]
14. Novel modification of 5-formyluracil by cysteine derivatives in aqueous solution. Terato H; Morita H; Ohyama Y; Ide H Nucleosides Nucleotides; 1998; 17(1-3):131-41. PubMed ID: 9708345 [TBL] [Abstract][Full Text] [Related]
15. Oxidation of C-1 compounds by Pseudomonas sp. MS. Kung HF; Wagner C Biochem J; 1970 Feb; 116(3):357-65. PubMed ID: 5435683 [TBL] [Abstract][Full Text] [Related]
16. Formaldehyde scavenging from peritoneal dialysis solutions using reduced aminothiol compounds. Bird SD; Legge M; Walker RJ Nephrology (Carlton); 2004 Apr; 9(2):65-72. PubMed ID: 15056264 [TBL] [Abstract][Full Text] [Related]
17. The chemical modification of the essential groups of beta-N-acetyl-D-glucosaminidase from Turbo cornutus Solander. Lin JC; Chen QX; Shi Y; Li SW; Zhao H IUBMB Life; 2003 Sep; 55(9):547-52. PubMed ID: 14658761 [TBL] [Abstract][Full Text] [Related]
18. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates. Zhang WX; Nishiura M; Hou Z Chemistry; 2007; 13(14):4037-51. PubMed ID: 17348047 [TBL] [Abstract][Full Text] [Related]
19. Pyridoxine and pyridoxal analogs. 13. A nuclear magnetic resonance study of the condensation of polyfunctional amino acids with pyridoxal. Abbott EH; Martell AE J Am Chem Soc; 1970 Mar; 92(6):1754-9. PubMed ID: 5418457 [No Abstract] [Full Text] [Related]
20. Formaldehyde metabolism by Escherichia coli. In vivo carbon, deuterium, and two-dimensional NMR observations of multiple detoxifying pathways. Hunter BK; Nicholls KM; Sanders JK Biochemistry; 1984 Jan; 23(3):508-14. PubMed ID: 6367820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]