BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7309693)

  • 1. Roles of charged groups on the surface of membrane lipid bilayer of human erythrocytes in induction of shape change.
    Tamura A; Fujii T
    J Biochem; 1981 Sep; 90(3):629-34. PubMed ID: 7309693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose transport into human erythrocytes treated with phospholipase A2 or C.
    Fujii H; Miwa I; Okuda J; Tamura A; Fujii T
    Biochim Biophys Acta; 1986 Aug; 883(1):77-82. PubMed ID: 3730428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of membrane lipids and proteins in discocyte-echinocyte and -stomatocyte transformation of erythrocytes.
    Fujii T
    Acta Biol Med Ger; 1981; 40(4-5):361-7. PubMed ID: 7315084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape.
    Fujii T; Tamura A
    J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological location and biological significance of phospholipids in the membrane of Newcastle disease virus. Hydrolysis of phospholipids in intact virion with pure phospholipases A2, C, and D.
    Suzuki Y; Maeda A; Matsumoto M
    J Biochem; 1982 Aug; 92(2):575-83. PubMed ID: 7130158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The phospholipase A2 hydrolysis of irradiated lipid membranes].
    Kisel' MA; Litvinko NM; Naubatova MK; Shadyro OI
    Radiats Biol Radioecol; 1995; 35(6):873-9. PubMed ID: 8563913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transbilayer distribution of phosphatidylcholine and phosphatidylethanolamine in the vacuolar membrane of Acer pseudoplatanus cells.
    Tavernier E; Pugin A
    Biochimie; 1995; 77(3):174-81. PubMed ID: 7647109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oxidative stress on membrane phospholipid and protein organization in human erythrocytes.
    Arduini A; Stern A; Storto S; Belfiglio M; Mancinelli G; Scurti R; Federici G
    Arch Biochem Biophys; 1989 Aug; 273(1):112-20. PubMed ID: 2757386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the susceptibility of human erythrocytes to snake venom myotoxic phospholipases A(2): role of negatively charged phospholipids as potential membrane binding sites.
    Díaz C; León G; Rucavado A; Rojas N; Schroit AJ; Gutiérrez JM
    Arch Biochem Biophys; 2001 Jul; 391(1):56-64. PubMed ID: 11414685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus.
    Wali RK; Jaffe S; Kumar D; Kalra VK
    Diabetes; 1988 Jan; 37(1):104-11. PubMed ID: 3335275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes.
    Jain SK
    J Biol Chem; 1984 Mar; 259(6):3391-4. PubMed ID: 6706963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2.
    Christiansson A; Kuypers FA; Roelofsen B; Op den Kamp JA; van Deenen LL
    J Cell Biol; 1985 Oct; 101(4):1455-62. PubMed ID: 4044642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting phospholipase activity with the amphipathic lipid packing sensor motif of ArfGAP1.
    Quartino PY; Fidelio GD; Manneville JB; Goud B; Ambroggio EE
    Biochem Biophys Res Commun; 2018 Oct; 505(1):290-294. PubMed ID: 30249399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayer- to non-bilayer-forming lipids.
    Jamil H; Hatch GM; Vance DE
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):419-27. PubMed ID: 8387269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane alterations in cellular aging: susceptibility of phospholipids in density (age)-separated human erythrocytes to phospholipase A2.
    Shukla SD; Hanahan DJ
    Arch Biochem Biophys; 1982 Mar; 214(1):335-41. PubMed ID: 7082006
    [No Abstract]   [Full Text] [Related]  

  • 16. Alteration of membrane phospholipid bilayer organization in human erythrocytes during drug-induced endocytosis.
    Schrier SL; Chiu DT; Yee M; Sizer K; Lubin B
    J Clin Invest; 1983 Nov; 72(5):1698-705. PubMed ID: 6630521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.
    van Meer G; de Kruijff B; op den Kamp JA; van Deenen LL
    Biochim Biophys Acta; 1980 Feb; 596(1):1-9. PubMed ID: 7353001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2.
    Henshaw JB; Olsen CA; Farnbach AR; Nielson KH; Bell JD
    Biochemistry; 1998 Jul; 37(30):10709-21. PubMed ID: 9692961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol-induced modifications to membrane lipid structure: effect on phospholipase A2-membrane interactions.
    Stubbs CD; Williams BW; Pryor CL; Rubin E
    Arch Biochem Biophys; 1988 May; 262(2):560-73. PubMed ID: 3364980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2.
    Grandbois M; Clausen-Schaumann H; Gaub H
    Biophys J; 1998 May; 74(5):2398-404. PubMed ID: 9591666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.