BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7309749)

  • 1. Effects of maleate on the content of CoA and its derivatives in rat kidney mitochondria.
    Pacanis A; Strzelecki T; Rogulski J
    J Biol Chem; 1981 Dec; 256(24):13035-8. PubMed ID: 7309749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of maleate on CoA metabolism in rat kidney.
    Rogulski J; Pacanis A
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():406-15. PubMed ID: 28903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of maleate action on rat kidney mitochondria. Effect on substrate-level phosphorylation.
    Pacanis A; Rogulski J; Ledóchowski H; Angielski S
    Acta Biochim Pol; 1975; 22(1):1-10. PubMed ID: 1130157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-linked regulation of mitochondrial fatty acid oxidation in the isolated perfused rat heart.
    Latipää PM
    J Mol Cell Cardiol; 1989 Aug; 21(8):765-71. PubMed ID: 2778813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxisomal and mitochondrial beta-oxidation of monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA and dicarboxylyl-CoA esters in tissues from untreated and clofibrate-treated rats.
    Vamecq J; Draye JP
    J Biochem; 1989 Aug; 106(2):216-22. PubMed ID: 2808318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria.
    Lysiak W; Lilly K; DiLisa F; Toth PP; Bieber LL
    J Biol Chem; 1988 Jan; 263(3):1151-6. PubMed ID: 3335535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of thyroid state and fasting on the concentrations of CoA and malonyl-CoA in rat liver.
    Lund H; Stakkestad JA; Skrede S
    Biochim Biophys Acta; 1986 May; 876(3):685-7. PubMed ID: 3707992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificity of succinyl-CoA transferase from rat kidney mitochondria.
    Pacanis A; Rogulski J
    Acta Biochim Pol; 1977; 24(1):3-11. PubMed ID: 868435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carnitine on mitochondrial oxidation of palmitoylearnitine.
    Brass EP; Hoppel CL
    Biochem J; 1980 May; 188(2):451-8. PubMed ID: 7396873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic effects of pivalate in isolated rat hepatocytes.
    Ruff LJ; Brass EP
    Toxicol Appl Pharmacol; 1991 Sep; 110(2):295-302. PubMed ID: 1891775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of short-chain and branched-chain fatty acids and their carnitine and CoA esters and of various metabolites and agents with branched-chain 2-oxo acid oxidation in rat muscle and liver mitochondria.
    Veerkamp JH; van Moerkerk HT; Wagenmakers AJ
    Int J Biochem; 1985; 17(9):967-74. PubMed ID: 3934010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of acetyl-carnitine oxidation in rat brown-adipose-tissue mitochondria by erucoyl-carnitine is due to sequestration of CoA.
    Alexson SE; Nedergaard J; Cannon B
    Biochim Biophys Acta; 1985 Apr; 834(2):149-58. PubMed ID: 3995059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for net uptake and efflux of mitochondrial coenzyme A.
    Tahiliani AG
    Biochim Biophys Acta; 1991 Aug; 1067(1):29-37. PubMed ID: 1868101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic CoA, S-acyl-CoA, biosynthetic precursors of the coenzyme and pantothenate-protein complexes in dietary pantothenic acid deficiency.
    Moiseenok AG; Sheibak VM; Gurinovich VA
    Int J Vitam Nutr Res; 1987; 57(1):71-7. PubMed ID: 3583597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites.
    Edwards MR; Bird MI; Saggerson ED
    Biochem J; 1985 Aug; 230(1):169-79. PubMed ID: 4052034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of mitochondrial beta-oxidation at the levels of [NAD+]/[NADH] and CoA acylation.
    Eaton S; Middleton B; Sherratt HS; Pourfarzam M; Quant PA; Bartlett K
    Adv Exp Med Biol; 1999; 466():145-54. PubMed ID: 10709638
    [No Abstract]   [Full Text] [Related]  

  • 18. Coenzyme A sequestration in rat hearts oxidizing ketone bodies.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1992 Mar; 89(3):968-73. PubMed ID: 1541685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling of Na+-dependent solute transport in renal brush border membranes of maleate-treated rats.
    Hong Que NT; Gmaj P; Angielski S
    Acta Biochim Pol; 1982; 29(3-4):275-87. PubMed ID: 7158173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M; Berge R
    Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.