These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 730976)

  • 1. Chemical reactions involved in the deep-fat frying of foods. VII. Identification of volatile decomposition products of trilinolein.
    Thompson JA; May WA; Paulose MM; Peterson RJ; Chang SS
    J Am Oil Chem Soc; 1978 Dec; 55(12):897-901. PubMed ID: 730976
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemical reactions involved in deep fat frying of foods. VI. Characterization of nonvolatile decomposition products of trilinolein.
    Paulose MM; Chang SS
    J Am Oil Chem Soc; 1973 May; 50(5):147-54. PubMed ID: 4710940
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of oleic and linoleic acids on the production of deep-fried odor in heated triolein and trilinolein.
    Warner K; Neff WE; Byrdwell WC; Gardner HW
    J Agric Food Chem; 2001 Feb; 49(2):899-905. PubMed ID: 11262047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical reactions involved in the deep-fat frying of foods.
    Chang SS; Peterson RJ; Ho CT
    J Am Oil Chem Soc; 1978 Oct; 55(10):718-27. PubMed ID: 730972
    [No Abstract]   [Full Text] [Related]  

  • 5. Chemical reactions involved in the deep fat frying of foods. I. A laboratory apparatus for frying under simulated restaurant conditions.
    Krishnamurthy RG; Kawada T; Chang SS
    J Am Oil Chem Soc; 1965 Oct; 42(10):878-82. PubMed ID: 5828234
    [No Abstract]   [Full Text] [Related]  

  • 6. Chemical reactions involved in deep-fat frying of foods: VIII. Characterization of nonvolatile decomposition products of triolein.
    Paulose MM; Chang SS
    J Am Oil Chem Soc; 1978 Apr; 55(4):375-80. PubMed ID: 659779
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in chemical composition of frozen coated fish products during deep-frying.
    Pérez-Palacios T; Petisca C; Casal S; Ferreira IM
    Int J Food Sci Nutr; 2014 Mar; 65(2):212-8. PubMed ID: 24215289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of cooking and handling conditions on furanic compounds in breaded fish products.
    Pérez-Palacios T; Petisca C; Henriques R; Ferreira IM
    Food Chem Toxicol; 2013 May; 55():222-8. PubMed ID: 23340093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heated fats. IV. Chemical changes in fats subjected to deep fat frying processes: cottonseed oil.
    Perkins EG; Van Akkeren LA
    J Am Oil Chem Soc; 1965 Sep; 42(9):782-6. PubMed ID: 5896931
    [No Abstract]   [Full Text] [Related]  

  • 10. Impact of additives on thermally-induced trans isomers in 9c,12c linoleic acid triacylglycerol.
    Guo Q; Ha Y; Li Q; Jin J; Deng Z; Li Y; Zhang S
    Food Chem; 2015 May; 174():299-305. PubMed ID: 25529684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in lysozyme due to reactions with volatile products of peroxidizing methyl linoleate.
    Funes J; Yong S; Karel M
    J Agric Food Chem; 1980; 28(4):794-8. PubMed ID: 7462495
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemical alterations taken place during deep-fat frying based on certain reaction products: a review.
    Zhang Q; Saleh AS; Chen J; Shen Q
    Chem Phys Lipids; 2012 Sep; 165(6):662-81. PubMed ID: 22800882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A study of the stability of certain vegetable fats used in deep-fat frying].
    Kadaner IaD; Usenko VF
    Vopr Pitan; 1966; 25(6):51-4. PubMed ID: 6002330
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaporation front compared with crust thickness in potato deep-fat frying.
    Lioumbas JS; Karapantsios TD
    J Food Sci; 2012 Jan; 77(1):E17-25. PubMed ID: 22133617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the frying performance of olive oil and palm superolein.
    Romano R; Giordano A; Vitiello S; Grottaglie LL; Musso SS
    J Food Sci; 2012 May; 77(5):C519-31. PubMed ID: 22490166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenicity of deep-frying fat, and evaluation of urine mutagenicity after consumption of fried potatoes.
    Hageman G; Hermans R; ten Hoor F; Kleinjans J
    Food Chem Toxicol; 1990 Feb; 28(2):75-80. PubMed ID: 2341091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparitive study of monocarbonyl compounds formed during deep frying in different fats.
    Wishner LA; Keeney M
    J Am Oil Chem Soc; 1965 Sep; 42(9):776-8. PubMed ID: 5827900
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimisation of pre-drying and deep-fat-frying conditions for production of low-fat fried carrot slices.
    Karacabey E; Turan MS; Özçelik ŞG; Baltacıoğlu C; Küçüköner E
    J Sci Food Agric; 2016 Oct; 96(13):4603-12. PubMed ID: 26916385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of antioxidants in foods.
    Warner CR; Brumley WC; Daniels DH; Joe FL; Fazio T
    Food Chem Toxicol; 1986; 24(10-11):1015-9. PubMed ID: 3804107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of high-temperature food processing on fats and oils.
    Warner K
    Adv Exp Med Biol; 1999; 459():67-77. PubMed ID: 10335369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.