These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7310366)

  • 1. The concentration and analysis of volatile hydrocarbons in fire debris using Tenax-GC.
    Russell LW
    J Forensic Sci Soc; 1981 Oct; 21(4):317-26. PubMed ID: 7310366
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of the relative sensitivities of the adsorption wire and other methods for the detection of accelerant residues in fire debris.
    Twibell JD; Home JM; Smalldon KW
    J Forensic Sci Soc; 1982 Apr; 22(2):155-9. PubMed ID: 7097235
    [No Abstract]   [Full Text] [Related]  

  • 3. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercalibration of gas chromatographic analyses for hydrocarbons in tissues and extracts of marine organisms.
    Farrington JW; Teal JM; Medeiros GC; Burns KA; Robinson EA; Quinn JG; Wade TL
    Anal Chem; 1976 Oct; 48(12):1711-6. PubMed ID: 987712
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitation of polycyclic aromatic hydrocarbons in diesel exhaust particulate matter by high-performance liquid chromatography fractionation and high-resolution gas chromatography.
    Tong HY; Karasek FW
    Anal Chem; 1984 Oct; 56(12):2129-34. PubMed ID: 6209996
    [No Abstract]   [Full Text] [Related]  

  • 6. Preparation of water soluble fractions of crude oils for toxicity studies.
    Maher WA
    Bull Environ Contam Toxicol; 1986 Feb; 36(2):226-9. PubMed ID: 3947760
    [No Abstract]   [Full Text] [Related]  

  • 7. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill.
    Hall RJ; Belisle AA; Sileo L
    J Wildl Dis; 1983 Apr; 19(2):106-9. PubMed ID: 6887430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of water-soluble fractions of crude and refined oils for use in toxicity studies.
    Maher WA
    Bull Environ Contam Toxicol; 1982 Sep; 29(3):268-72. PubMed ID: 7126916
    [No Abstract]   [Full Text] [Related]  

  • 9. High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils.
    Dutriez T; Courtiade M; Thiébaut D; Dulot H; Bertoncini F; Vial J; Hennion MC
    J Chromatogr A; 2009 Apr; 1216(14):2905-12. PubMed ID: 19110253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of differential flow and cryogenic modulators comprehensive two-dimensional gas chromatography systems for the detailed analysis of light cycle oil.
    Semard G; Gouin C; Bourdet J; Bord N; Livadaris V
    J Chromatogr A; 2011 May; 1218(21):3146-52. PubMed ID: 20933237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrocarbon exposure from handling jet fuel at some Swedish aircraft units.
    Holm S; Norbäck D; Frenning B; Göthe CJ
    Scand J Work Environ Health; 1987 Oct; 13(5):438-44. PubMed ID: 3433046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.
    Fialkov AB; Gordin A; Amirav A
    J Chromatogr A; 2008 Jun; 1195(1-2):127-35. PubMed ID: 18495139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of arson accelerants by gas chromatographic patterns produced by a digital log electrometer.
    Chisum WJ; Elzerman TR
    J Forensic Sci; 1972 Apr; 17(2):280-91. PubMed ID: 4679802
    [No Abstract]   [Full Text] [Related]  

  • 14. Interlaboratory comparison of determinations of trace level hydrocarbons in mussels.
    Wise SA; Chesler SN; Guenther FR; Hertz HS; Hilpert LR; May WE; Parris RM
    Anal Chem; 1980 Oct; 52(12):1828-33. PubMed ID: 7435988
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of refined petroleum products in contaminated soils using an identification index for GC chromatograms.
    Kwon D; Ko MS; Yang JS; Kwon MJ; Lee SW; Lee S
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12029-34. PubMed ID: 25874431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of accelerants in blood of cadavers found in the wreckage after fire.
    Iwasaki Y; Yashiki M; Kojima T; Miyazaki T
    Am J Forensic Med Pathol; 1998 Mar; 19(1):80-6. PubMed ID: 9539399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of fuel dialkyl ethers and BTEX in water using headspace solid-phase microextraction and gas chromatography-flame ionization detection.
    Arambarri I; Lasa M; Garcia R; Millán E
    J Chromatogr A; 2004 Apr; 1033(2):193-203. PubMed ID: 15088739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of dispersion in fuel oil bioassay.
    Vanderhorst JR; Gibson CE; Moore LJ
    Bull Environ Contam Toxicol; 1976 Jan; 15(1):93-100. PubMed ID: 1276493
    [No Abstract]   [Full Text] [Related]  

  • 19. A rapid method to determine Bunker C fuel oil in marine organisms.
    Morgan NL
    Bull Environ Contam Toxicol; 1975 Sep; 14(3):309-12. PubMed ID: 1174744
    [No Abstract]   [Full Text] [Related]  

  • 20. Gas chromatographic separation of diastereomeric isoprenoids as molecular markers of oil pollution.
    Berthou F; Friovourt MP
    J Chromatogr; 1981 Dec; 219(3):393-402. PubMed ID: 7328155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.