BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7311495)

  • 1. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties.
    Lee RC; Frank EH; Grodzinsky AJ; Roylance DK
    J Biomech Eng; 1981 Nov; 103(4):280-92. PubMed ID: 7311495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load.
    Garon M; Légaré A; Guardo R; Savard P; Buschmann MD
    J Biomech; 2002 Feb; 35(2):207-16. PubMed ID: 11784539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage.
    Soltz MA; Ateshian GA
    Ann Biomed Eng; 2000 Feb; 28(2):150-9. PubMed ID: 10710186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments.
    Zhu W; Mow VC; Koob TJ; Eyre DR
    J Orthop Res; 1993 Nov; 11(6):771-81. PubMed ID: 8283321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cartilage electromechanics--I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength.
    Frank EH; Grodzinsky AJ
    J Biomech; 1987; 20(6):615-27. PubMed ID: 3611137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies.
    Sadeghi H; Espino DM; Shepherd DE
    Proc Inst Mech Eng H; 2015 Feb; 229(2):115-23. PubMed ID: 25767149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streaming potentials: a sensitive index of enzymatic degradation in articular cartilage.
    Frank EH; Grodzinsky AJ; Koob TJ; Eyre DR
    J Orthop Res; 1987; 5(4):497-508. PubMed ID: 3681524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilage electromechanics--II. A continuum model of cartilage electrokinetics and correlation with experiments.
    Frank EH; Grodzinsky AJ
    J Biomech; 1987; 20(6):629-39. PubMed ID: 3611138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and analysis of cartilage degeneration by spatially resolved streaming potentials.
    Légaré A; Garon M; Guardo R; Savard P; Poole AR; Buschmann MD
    J Orthop Res; 2002 Jul; 20(4):819-26. PubMed ID: 12168673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streaming potentials during the confined compression creep test of normal and proteoglycan-depleted cartilage.
    Chen AC; Nguyen TT; Sah RL
    Ann Biomed Eng; 1997; 25(2):269-77. PubMed ID: 9084832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure.
    Khalsa PS; Eisenberg SR
    J Biomech; 1997 Jun; 30(6):589-94. PubMed ID: 9165392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.
    Han G; Hess C; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2018 Aug; 84():28-34. PubMed ID: 29729578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment.
    Korhonen RK; Jurvelin JS
    Med Eng Phys; 2010 Mar; 32(2):155-60. PubMed ID: 19955010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.