These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 7311908)
21. [The causes of the biological action of electrochemically activated solutions by changes in the growth of Escherichia coli cells]. Miroshnikov AI Biofizika; 2004; 49(5):866-71. PubMed ID: 15526472 [TBL] [Abstract][Full Text] [Related]
22. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Guinea E; Arias C; Cabot PL; Garrido JA; RodrÃguez RM; Centellas F; Brillas E Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891 [TBL] [Abstract][Full Text] [Related]
23. [Hydrogen and carboxide bacteria belonging to the microflora of degradation]. Zavarzin GA Mikrobiologiia; 1976; 45(1):20-2. PubMed ID: 820943 [TBL] [Abstract][Full Text] [Related]
24. [Development of hydrogen bacteria on hard surfaces]. Kriukov VR Mikrobiologiia; 1981; 50(2):299-304. PubMed ID: 7242393 [TBL] [Abstract][Full Text] [Related]
25. Electrolytic treatment of Standard Malaysian Rubber process wastewater. Vijayaraghavan K; Ahmad D; Yazid AY J Hazard Mater; 2008 Jan; 150(2):351-6. PubMed ID: 17543454 [TBL] [Abstract][Full Text] [Related]
27. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. Hegler F; Posth NR; Jiang J; Kappler A FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650 [TBL] [Abstract][Full Text] [Related]
28. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
29. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Lu L; Ren N; Xing D; Logan BE Biosens Bioelectron; 2009 Jun; 24(10):3055-60. PubMed ID: 19375299 [TBL] [Abstract][Full Text] [Related]
30. [Effect of the redox potential on the growth of aerobic microorganisms]. Andreeva EA; Rabotnova IL Mikrobiologiia; 1978; 47(4):637-43. PubMed ID: 30023 [TBL] [Abstract][Full Text] [Related]
31. [Effects of the thiol reagent dithiothreitol on the oxidation-reduction potential and the growth of Escherichia coli in anaerobic conditions at different pH]. Kirakosian G; Bagramian K; Trchunian A Biofizika; 2005; 50(6):1095-9. PubMed ID: 16358789 [TBL] [Abstract][Full Text] [Related]
32. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple. Gendel Y; Levi N; Lahav O Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962 [TBL] [Abstract][Full Text] [Related]
33. [Degradation of monochloro-substituted anilines by Alcaligenes faecalis]. Surovtseva EG; Vol'nova AI; Shatskaia TIa Mikrobiologiia; 1980; 49(2):351-4. PubMed ID: 7393014 [TBL] [Abstract][Full Text] [Related]
34. Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Nerenberg R; Kawagoshi Y; Rittmann BE Water Res; 2006 Oct; 40(17):3290-6. PubMed ID: 16938337 [TBL] [Abstract][Full Text] [Related]
35. [Oxidation-reduction and production of molecular hydrogen by Escherichia coli in the hyperosmotic medium]. Kirakosian G; Bagramian K; Trchunian A Biofizika; 2001; 46(2):245-50. PubMed ID: 11357337 [TBL] [Abstract][Full Text] [Related]
36. [Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus]. Abdrashitova SA; Mynbaeva BN; Ilialetdinov AN Mikrobiologiia; 1981; 50(1):41-5. PubMed ID: 7219219 [TBL] [Abstract][Full Text] [Related]
37. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Liang C; Bruell CJ; Marley MC; Sperry KL Chemosphere; 2004 Jun; 55(9):1225-33. PubMed ID: 15081763 [TBL] [Abstract][Full Text] [Related]
38. Removal of Mn(II) ions from aqueous neutral media by manganese-oxidizing fungus in the presence of carbon fiber. Sasaki K; Konno H; Endo M; Takano K Biotechnol Bioeng; 2004 Mar; 85(5):489-96. PubMed ID: 14760689 [TBL] [Abstract][Full Text] [Related]
39. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae. Bryan CG; Johnson DB FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673 [TBL] [Abstract][Full Text] [Related]
40. Numerical modeling of ferrous-ion oxidation rate in Acidithiobacillus ferrooxidans ATCC 23270: optimization of culture conditions through statistically designed experiments. Abdel-Fattah YR; Abdel-Fattah WR; Zamilpa R; Pierce JR Acta Microbiol Pol; 2002; 51(3):225-35. PubMed ID: 12588097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]