BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 731576)

  • 1. Modulation of single vagal efferent fibre discharge by gastrointestinal afferents in the rat.
    Davison JS; Grundy D
    J Physiol; 1978 Nov; 284():69-82. PubMed ID: 731576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vagal efferent fibre responses to gastric and oesophageal mechanical and chemical stimuli in the ferret.
    Partosoedarso ER; Blackshaw LA
    J Auton Nerv Syst; 1997 Oct; 66(3):169-78. PubMed ID: 9406122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of vagal efferent fibre discharge by mechanoreceptors in the stomach, duodenum and colon of the ferret.
    Grundy D; Salih AA; Scratcherd T
    J Physiol; 1981; 319():43-52. PubMed ID: 7320920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of single vagal efferent fibre discharge by gastric afferents in the ferret [proceedings].
    Andrews PL; Salih AA; Scratcherd T
    J Physiol; 1978 Nov; 284():40P. PubMed ID: 731553
    [No Abstract]   [Full Text] [Related]  

  • 5. Centrifugal gastric vagal afferent unit activities: another source of gastric "efferent" control.
    Wei JY; Adelson DW; Taché Y; Go VL
    J Auton Nerv Syst; 1995 Apr; 52(2-3):83-97. PubMed ID: 7615902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastro-oesophageal afferent and serotonergic inputs to vagal efferent neurones.
    Blackshaw LA
    J Auton Nerv Syst; 1994 Oct; 49(2):93-103. PubMed ID: 7806770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflex excitation of antral motility induced by gastric distension in the ferret.
    Andrews PL; Grundy D; Scratcherd T
    J Physiol; 1980 Jan; 298():79-84. PubMed ID: 7359444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastric vagal efferent inhibition evoked by intravenous CRF is unrelated to simultaneously recorded vagal afferent activity in urethane-anesthetized rats.
    Adelson DW; Kosoyan HP; Wang Y; Steinberg JZ; Taché Y
    J Neurophysiol; 2007 Apr; 97(4):3004-14. PubMed ID: 17314242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological evidence for distinct vagal pathways mediating CCK-evoked motor effects in the proximal versus distal stomach.
    Okano-Matsumoto S; McRoberts JA; Taché Y; Adelson DW
    J Physiol; 2011 Jan; 589(Pt 2):371-93. PubMed ID: 21078593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular changes in elicited by vagal gastric afferents in the rat.
    Grundy D; Davison JS
    Q J Exp Physiol; 1981 Jul; 66(3):307-10. PubMed ID: 6910731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological study of vagal afferent and efferent units in conscious sheep.
    Rousseau JP
    Q J Exp Physiol; 1984 Jul; 69(3):627-37. PubMed ID: 6473700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single electrical shock of a somatic afferent nerve elicits A- and C-reflex discharges in gastric vagal efferent nerves in anesthetized rats.
    Kimura A; Sato A; Sato Y; Suzuki A
    Neurosci Lett; 1996 May; 210(1):53-6. PubMed ID: 8762190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat.
    Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE
    J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of oesophageal and intestinal receptors in the control of gastric motility.
    Miolan JP; Roman C
    J Auton Nerv Syst; 1984; 10(3-4):235-41. PubMed ID: 6481090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors.
    Davison JS; Clarke GD
    Am J Physiol; 1988 Jul; 255(1 Pt 1):G55-61. PubMed ID: 3389415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach.
    Andrews PL; Grundy D; Scratcherd T
    J Physiol; 1980 Jan; 298():513-24. PubMed ID: 7359436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones.
    Partosoedarso ER; Blackshaw LA
    Auton Neurosci; 2000 Sep; 83(1-2):37-48. PubMed ID: 11023627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood glucose levels modulate efferent activity in the vagal supply to the rat liver.
    Niijima A
    J Physiol; 1985 Jul; 364():105-12. PubMed ID: 3897517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflex suppression and initiation of gastric contractions by electrical stimulation of the hepatic vagus nerve.
    Lee KC
    Neurosci Lett; 1985 Jan; 53(1):57-62. PubMed ID: 3991050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.