These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 731585)

  • 1. Hair-cell functions and related neuronal activities in the different receptor systems of the geckonid and crocodilian labyrinth [proceedings].
    Khan NS; Mueller-Arnecke H; Trincker DE
    J Physiol; 1978 Nov; 284():78P-79P. PubMed ID: 731585
    [No Abstract]   [Full Text] [Related]  

  • 2. Functions of different receptor systems in the reptilian labyrinth.
    Khan NS; Müller-Arnecke H; Röskenbleck H; Trincker DE
    Arch Otorhinolaryngol; 1979; 224(1-2):31-5. PubMed ID: 485947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology. Heeding the hormonal call.
    Zakon H
    Science; 2004 Jul; 305(5682):349-50. PubMed ID: 15256660
    [No Abstract]   [Full Text] [Related]  

  • 4. Morphophysiological studies of the mammalian vestibular labyrinth.
    Goldberg JM; Baird RA; Fernández C
    Prog Clin Biol Res; 1985; 176():231-45. PubMed ID: 2987974
    [No Abstract]   [Full Text] [Related]  

  • 5. Sensory transduction and neuronal transmission as related to ultrastructure and encoding of information in different labyrinthine receptor systems of vertebrates.
    Khan NS; Schwabl U; Trincker DE
    Arch Otorhinolaryngol; 1982; 236(1):27-39. PubMed ID: 6289788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of receptor cells. Cytological, membranous and molecular levels.
    Vinnikov YA
    Mol Biol Biochem Biophys; 1982; 34():1-141. PubMed ID: 7033765
    [No Abstract]   [Full Text] [Related]  

  • 7. Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea.
    Fuchs PA; Evans MG
    J Comp Physiol A; 1988 Dec; 164(2):151-63. PubMed ID: 3244125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ultrastructure of the sensory formations of the internal ear in the common frog].
    Tikhomirova LI
    Arkh Anat Gistol Embriol; 1985 Nov; 89(11):35-40. PubMed ID: 3879168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiology of snake infrared receptors.
    Terashima SI; Goris RC
    Prog Neurobiol; 1975; 2():311-32. PubMed ID: 1162081
    [No Abstract]   [Full Text] [Related]  

  • 10. [Inhibition and efferent facilitation of sensory activity in the isolated labyrinth of the frog].
    Rossi ML; Martini M
    Boll Soc Ital Biol Sper; 1990 Oct; 66(10):1009-14. PubMed ID: 2096874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of the adult inner ear in the mouse following prenatal irradiation.
    Hultcrantz M
    Scand Audiol Suppl; 1985; 24():1-24. PubMed ID: 3879375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A procedure to label inner ear afferent nerve endings for calcium imaging.
    Boyer S; Ruel J; Puel JL; Chabbert C
    Brain Res Brain Res Protoc; 2004 Jun; 13(2):91-8. PubMed ID: 15171991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Extrapolation capacity of caymans].
    Ochinskaia EI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1988; 38(1):174-6. PubMed ID: 3376563
    [No Abstract]   [Full Text] [Related]  

  • 14. [Role of the Ca and K currents on the afferent synaptic transmission of the isolated labyrinth of the frog].
    Rossi ML; Martini M
    Boll Soc Ital Biol Sper; 1987 Oct; 63(10):931-7. PubMed ID: 2451924
    [No Abstract]   [Full Text] [Related]  

  • 15. Encephalic photoreceptor involvement in the entrainment and control of circadian activity of young American alligators.
    Kavaliers M; Ralph CL
    Physiol Behav; 1981 Mar; 26(3):413-8. PubMed ID: 7243958
    [No Abstract]   [Full Text] [Related]  

  • 16. [Differentiation, protection and regeneration of hair cells and auditory neurons in mammals].
    Malgrange B
    Bull Mem Acad R Med Belg; 2005; 160(5-6):276-86. PubMed ID: 16465782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment.
    Duckert LG; Rubel EW
    J Comp Neurol; 1993 May; 331(1):75-96. PubMed ID: 8320349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocalization in juvenile crocodilians.
    Herzog HA; Burghardt GM
    Z Tierpsychol; 1977 Jul; 44(3):294-304. PubMed ID: 930443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology of the macula neglecta in sharks of the genus Carcharhinus.
    Corwin JT
    J Morphol; 1977 Jun; 152(3):341-62. PubMed ID: 875041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ signaling in the inner ear.
    Mammano F; Bortolozzi M; Ortolano S; Anselmi F
    Physiology (Bethesda); 2007 Apr; 22():131-44. PubMed ID: 17420304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.