These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 731671)
41. Alterations in the mechanical properties of peripheral nerve following crush injury. Beel JA; Groswald DE; Luttges MW J Biomech; 1984; 17(3):185-93. PubMed ID: 6736055 [TBL] [Abstract][Full Text] [Related]
42. Mechanical properties and microstructure of the superficial musculoaponeurotic system. Har-Shai Y; Bodner SR; Egozy-Golan D; Lindenbaum ES; Ben-Izhak O; Mitz V; Hirshowitz B Plast Reconstr Surg; 1996 Jul; 98(1):59-70; discussion 71-3. PubMed ID: 8657788 [TBL] [Abstract][Full Text] [Related]
43. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. Oxlund H; Andreassen TT J Anat; 1980 Dec; 131(Pt 4):611-20. PubMed ID: 7216901 [TBL] [Abstract][Full Text] [Related]
44. A viscoelastic model for the mechanical properties of biological materials. Sanjeevi R J Biomech; 1982; 15(2):107-9. PubMed ID: 7076685 [No Abstract] [Full Text] [Related]
45. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues. Lu M; Huang S; Yang X; Yang L; Mao R Biomed Res Int; 2017; 2017():9842037. PubMed ID: 28373991 [TBL] [Abstract][Full Text] [Related]
46. Plasticity of the human tendon to short- and long-term mechanical loading. Arampatzis A; Karamanidis K; Mademli L; Albracht K Exerc Sport Sci Rev; 2009 Apr; 37(2):66-72. PubMed ID: 19305197 [TBL] [Abstract][Full Text] [Related]
47. A new mechanical instrument for the measurement of fibro-elasticity, with special reference to its use in the assessment of the consistency of the uterine cervix. Bakke T Acta Obstet Gynecol Scand; 1973; 52(3):277-87. PubMed ID: 4795520 [No Abstract] [Full Text] [Related]
48. In vitro system for applying cyclic loads to connective tissues under displacement or force control. Asundi KR; Kursa K; Lotz J; Rempel DM Ann Biomed Eng; 2007 Jul; 35(7):1188-95. PubMed ID: 17385043 [TBL] [Abstract][Full Text] [Related]
49. The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. Atkinson TS; Ewers BJ; Haut RC J Biomech; 1999 Sep; 32(9):907-14. PubMed ID: 10460127 [TBL] [Abstract][Full Text] [Related]
51. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Pritchard RH; Huang YY; Terentjev EM Soft Matter; 2014 Mar; 10(12):1864-84. PubMed ID: 24652375 [TBL] [Abstract][Full Text] [Related]
52. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues. Astruc L; De Meulaere M; Witz JF; Nováček V; Turquier F; Hoc T; Brieu M J Mech Behav Biomed Mater; 2018 Jun; 82():45-50. PubMed ID: 29567529 [TBL] [Abstract][Full Text] [Related]
53. Regulation of connective tissue homeostasis in the skin by mechanical forces. Eckes B; Krieg T Clin Exp Rheumatol; 2004; 22(3 Suppl 33):S73-6. PubMed ID: 15344602 [TBL] [Abstract][Full Text] [Related]
54. Transient study of couple stress effects in compact bone: torsion. Yang JF; Lakes RS J Biomech Eng; 1981 Nov; 103(4):275-9. PubMed ID: 7311494 [TBL] [Abstract][Full Text] [Related]
55. Relationships between the biomechanical properties, composition and molecular structure of connective tissues. Oxlund H Connect Tissue Res; 1986; 15(1-2):65-72. PubMed ID: 2944703 [TBL] [Abstract][Full Text] [Related]
56. Stiffness--an unknown world of mechanical science? Baumgart E Injury; 2000 May; 31 Suppl 2():S-B14-23. PubMed ID: 10853758 [TBL] [Abstract][Full Text] [Related]
57. The bending properties of single osteons. Ascenzi A; Baschieri P; Benvenuti A J Biomech; 1990; 23(8):763-71. PubMed ID: 2384488 [TBL] [Abstract][Full Text] [Related]
58. The mechanical characteristics of the long bones of the lower extremity in torsional loading. Martens M; van Audekercke R; de Meester P; Mulier JC J Biomech; 1980; 13(8):667-76. PubMed ID: 7419533 [No Abstract] [Full Text] [Related]
59. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020 [TBL] [Abstract][Full Text] [Related]
60. Mechanical behaviour of annulus fibrosus tissue: identification of a poro-hyper-elastic model from experimental measurements. Baldit A; Ambard D; Cherblanc F; Royer P Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():280-1. PubMed ID: 23923942 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]