BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 731680)

  • 1. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 m KCl.
    Nelson DJ; Ehrenfeld J; Lindemann B
    J Membr Biol; 1978; 40 Spec No():91-119. PubMed ID: 731680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative potential level in the outer layer of the toad skin.
    Nunes MA; Vieira FL
    J Membr Biol; 1975 Nov; 24(2):161-81. PubMed ID: 507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some properties of KCl-filled microelectrodes: correlation of potassium "leakage" with tip resistance.
    Fromm M; Schultz SG
    J Membr Biol; 1981; 62(3):239-44. PubMed ID: 7328633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical profiles in the corneal epithelium.
    Klyce SD
    J Physiol; 1972 Oct; 226(2):407-29. PubMed ID: 4538944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular potassium activity in epithelial cells of frog fundic gastric mucosa.
    Schettino T; Curci S
    Pflugers Arch; 1980 Jan; 383(2):99-103. PubMed ID: 6966792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
    Bolton TB; Vaughan-Jones RD
    J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.
    DeLong J; Civan MM
    J Membr Biol; 1983; 72(3):183-93. PubMed ID: 6406672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A near-zero membrane potential in transporting corneal endothelial cells of rabbit.
    Hodson S; Wigham C
    J Physiol; 1989 May; 412():365-74. PubMed ID: 2600836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+, Na+, and Cl- activities in ventricular myocytes isolated from rabbit heart.
    Désilets M; Baumgarten CM
    Am J Physiol; 1986 Aug; 251(2 Pt 1):C197-208. PubMed ID: 2426957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the origin of the tip potential of glass microelectrode.
    Okada Y; Inouye A
    Biophys Struct Mech; 1976 Apr; 2(1):31-42. PubMed ID: 963226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and artificial ion exchangers: electrical measurements with glass microelectrodes.
    Vieira FL; Onuchic MI
    J Membr Biol; 1978 Apr; 40(2):157-64. PubMed ID: 96268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic device for microelectrode recordings in epithelial cells.
    Garcia-Diaz JF; Stump S; Armstrong WM
    Am J Physiol; 1984 Mar; 246(3 Pt 1):C339-46. PubMed ID: 6703048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microelectrode artifacts and frog skin potentials.
    Nagel W
    J Membr Biol; 1979 Dec; 51(1):97-100. PubMed ID: 522131
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chlorides leakage from microelectrodes.
    Blatt MR
    Planta; 1987 Feb; 170(2):272-87. PubMed ID: 24232888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of electrolyte-filled glass microelectrodes: a model analysis.
    Fåhraeus C; Grampp W
    J Neurosci Methods; 1997 Dec; 78(1-2):29-45. PubMed ID: 9496999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of potassium leak from single 3 M KCl microelectrodes.
    Stoner LC; Natke E; Dixon MK
    Am J Physiol; 1984 Mar; 246(3 Pt 2):F343-8. PubMed ID: 6703067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological properties of Dictyostelium derived from membrane potential measurements with microelectrodes.
    Van Duijn B; Ypey DL; Van der Molen LG
    J Membr Biol; 1988 Dec; 106(2):123-34. PubMed ID: 3225840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EXPOSURE OF THE ISOLATED FROG SKIN TO HIGH POTASSIUM CONCENTRATIONS AT THE INTERNAL SURFACE. II. CHANGES IN EPITHELIAL CELL VOLUME, RESISTANCE, AND RESPONSE TO ANTIDIURETIC HORMONE.
    USSING HH; BIBER TU; BRICKER NS
    J Gen Physiol; 1965 Jan; 48(3):425-33. PubMed ID: 14284777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium.
    Urbach V; van Kerkhove E; Harvey BJ
    J Gen Physiol; 1994 Apr; 103(4):583-604. PubMed ID: 8057079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.