These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7317317)

  • 41. Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes.
    Fang X; Sakaguchi H; Fujikado T; Osanai M; Ikuno Y; Kamei M; Ohji M; Yagi T; Tano Y
    Graefes Arch Clin Exp Ophthalmol; 2006 Mar; 244(3):364-75. PubMed ID: 16079995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix.
    Johnson EC; Morrison JC; Farrell S; Deppmeier L; Moore CG; McGinty MR
    Exp Eye Res; 1996 Jun; 62(6):663-74. PubMed ID: 8983948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The course of axons of retinal ganglion cells within the optic nerve and tract of the chick (Gallus gallus).
    Ehrlich D; Mark R
    J Comp Neurol; 1984 Mar; 223(4):583-91. PubMed ID: 6715572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new and reliable animal model for optic nerve injury.
    Yan H; Li F; Zhang L
    Curr Eye Res; 2012 Oct; 37(10):941-8. PubMed ID: 22667465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins.
    Balaratnasingam C; Morgan WH; Bass L; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):986-99. PubMed ID: 18326722
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.
    Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
    Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regional optic nerve damage in experimental mouse glaucoma.
    Mabuchi F; Aihara M; Mackey MR; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4352-8. PubMed ID: 15557443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage.
    Pang IH; Johnson EC; Jia L; Cepurna WO; Shepard AR; Hellberg MR; Clark AF; Morrison JC
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1313-21. PubMed ID: 15790897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A mouse model of elevated intraocular pressure: retina and optic nerve findings.
    Gross RL; Ji J; Chang P; Pennesi ME; Yang Z; Zhang J; Wu SM
    Trans Am Ophthalmol Soc; 2003; 101():163-9; discussion 169-71. PubMed ID: 14971574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure.
    Pena JD; Agapova O; Gabelt BT; Levin LA; Lucarelli MJ; Kaufman PL; Hernandez MR
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2303-14. PubMed ID: 11527944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation syndrome.
    Gottanka J; Flügel-Koch C; Martus P; Johnson DH; Lütjen-Drecoll E
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2435-46. PubMed ID: 9375560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optic nerve regeneration: molecular pre-requisites and the role of training. Restoring vision after optic nerve injury.
    Beazley LD; Rodger J; King CE; Bartlett CA; Taylor AL; Dunlop SA
    Adv Exp Med Biol; 2006; 572():389-95. PubMed ID: 17249601
    [No Abstract]   [Full Text] [Related]  

  • 53. Ischemic model of optic nerve injury.
    Cioffi GA
    Trans Am Ophthalmol Soc; 2005; 103():592-613. PubMed ID: 17057819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage.
    Chauhan BC; Pan J; Archibald ML; LeVatte TL; Kelly ME; Tremblay F
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2969-76. PubMed ID: 12202517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast axonal transport in early experimental disc edema.
    Radius RL; Anderson DR
    Invest Ophthalmol Vis Sci; 1980 Feb; 19(2):158-68. PubMed ID: 6153175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain.
    Gennarelli TA; Thibault LE; Tipperman R; Tomei G; Sergot R; Brown M; Maxwell WL; Graham DI; Adams JH; Irvine A
    J Neurosurg; 1989 Aug; 71(2):244-53. PubMed ID: 2746348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury.
    Sun X; Tang W; Zheng L
    Chin J Traumatol; 2002 Dec; 5(6):355-60. PubMed ID: 12443577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of elevated intraocular pressure on slow axonal protein flow.
    Levy NS
    Invest Ophthalmol; 1974 Sep; 13(9):691-5. PubMed ID: 4137262
    [No Abstract]   [Full Text] [Related]  

  • 59. [Morphological studies on the axoplasmic response in retina and optic nerve injuries].
    Mukai N
    No To Shinkei; 1968 Nov; 20(11):1159-76. PubMed ID: 4180345
    [No Abstract]   [Full Text] [Related]  

  • 60. [The study on the structure of the intracanal portion of the optic nerve].
    Shikishima K; Ohki K; Tsuneoka H
    Nippon Ganka Gakkai Zasshi; 1986 Sep; 90(9):1187-95. PubMed ID: 3799392
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.