BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7317361)

  • 1. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis.
    Holmes MA; Matthews BW
    Biochemistry; 1981 Nov; 20(24):6912-20. PubMed ID: 7317361
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiorphan and retro-thiorphan display equivalent interactions when bound to crystalline thermolysin.
    Roderick SL; Fournie-Zaluski MC; Roques BP; Matthews BW
    Biochemistry; 1989 Feb; 28(4):1493-7. PubMed ID: 2719912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases.
    Monzingo AF; Matthews BW
    Biochemistry; 1984 Nov; 23(24):5724-9. PubMed ID: 6395881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition stereochemistry of hydroxamate inhibitors for thermolysin.
    Jin Y; Kim DH
    Bioorg Med Chem Lett; 1998 Dec; 8(24):3515-8. PubMed ID: 9934463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the stereospecificity in binding hydroxamates of alpha- and beta-phenylalanine methylamide to thermolysin revealed by the X-ray crystallographic study.
    Kim SJ; Kim DH; Park JD; Woo JR; Jin Y; Ryu SE
    Bioorg Med Chem; 2003 May; 11(11):2421-6. PubMed ID: 12735988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of a new alpha-aminophosphinic derivative inside the active site of TLN (thermolysin): a model for zinc-metalloendopeptidase inhibition.
    Selkti M; Tomas A; Gaucher JF; Prangé T; Fournié-Zaluski MC; Chen H; Roques BP
    Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1200-5. PubMed ID: 12832763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzyme-catalyzed proteolytic reaction pathway.
    Park JD; Kim DH
    Bioorg Med Chem Lett; 2003 Oct; 13(19):3161-6. PubMed ID: 12951085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin.
    Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W
    J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of thermolysin refined at 1.6 A resolution.
    Holmes MA; Matthews BW
    J Mol Biol; 1982 Oct; 160(4):623-39. PubMed ID: 7175940
    [No Abstract]   [Full Text] [Related]  

  • 11. Carbonic anhydrase: zinc and the mechanism of catalysis.
    Coleman JE
    Ann N Y Acad Sci; 1984; 429():26-48. PubMed ID: 6430165
    [No Abstract]   [Full Text] [Related]  

  • 12. Binding of lanthanide ions to thermolysin.
    Matthews BW; Weaver LH
    Biochemistry; 1974 Apr; 13(8):1719-25. PubMed ID: 4831359
    [No Abstract]   [Full Text] [Related]  

  • 13. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis.
    Kester WR; Matthews BW
    Biochemistry; 1977 May; 16(11):2506-16. PubMed ID: 861218
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of the structures of carboxypeptidase A and thermolysin.
    Kester WR; Matthews BW
    J Biol Chem; 1977 Nov; 252(21):7704-10. PubMed ID: 914833
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment.
    Kuzuya K; Inouye K
    J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method.
    Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N
    J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans.
    Monzingo AF; Matthews BW
    Biochemistry; 1982 Jul; 21(14):3390-4. PubMed ID: 7052122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of zinc substitutions in the active site of thermolysin.
    Holland DR; Hausrath AC; Juers D; Matthews BW
    Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and stability of thermophilic enzymes. Studies on thermolysin.
    Fontana A
    Biophys Chem; 1988 Feb; 29(1-2):181-93. PubMed ID: 3129040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of the biproduct analog L-benzylsuccinic acid to thermolysin determined by X-ray crystallography.
    Bolognesi MC; Matthews BW
    J Biol Chem; 1979 Feb; 254(3):634-9. PubMed ID: 762086
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.