These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 7317371)
1. Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Jennings ML; Adams MF Biochemistry; 1981 Dec; 20(25):7118-23. PubMed ID: 7317371 [TBL] [Abstract][Full Text] [Related]
2. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonate. Jennings ML; Passow H Biochim Biophys Acta; 1979 Jul; 554(2):498-519. PubMed ID: 486455 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein. Cousin JL; Motais R Biochim Biophys Acta; 1982 May; 687(2):147-55. PubMed ID: 7046802 [TBL] [Abstract][Full Text] [Related]
4. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. Jennings ML; Schulz RK; Allen M J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255 [TBL] [Abstract][Full Text] [Related]
5. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. Jennings ML; Adams-Lackey M; Denney GH J Biol Chem; 1984 Apr; 259(7):4652-60. PubMed ID: 6707024 [TBL] [Abstract][Full Text] [Related]
6. Proteolytic digestion of band 3 from bovine erythrocyte membranes in membrane-bound and solubilized states. Makino S; Moriyama R; Kitahara T; Koga S J Biochem; 1984 Apr; 95(4):1019-29. PubMed ID: 6746585 [TBL] [Abstract][Full Text] [Related]
7. Flufenamic acid senses conformation and asymmetry of human erythrocyte band 3 anion transport protein. Knauf PA; Spinelli LJ; Mann NA Am J Physiol; 1989 Aug; 257(2 Pt 1):C277-89. PubMed ID: 2764091 [TBL] [Abstract][Full Text] [Related]
8. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. Jennings ML J Gen Physiol; 1982 Feb; 79(2):169-85. PubMed ID: 6276495 [TBL] [Abstract][Full Text] [Related]
9. Lys-430, site of irreversible inhibition of band 3 Cl- flux by eosin-5-maleimide, is not at the transport site. Liu SQ; Knauf PA Am J Physiol; 1993 May; 264(5 Pt 1):C1155-64. PubMed ID: 7684559 [TBL] [Abstract][Full Text] [Related]
10. Papain cleavage of the 38,000-dalton fragment inhibits the binding of 4, 4'-diisothiocyanostilbene-2, 2'-disulfonate to lys-539 on the 60,000-dalton fragment in human band 3. Yamaguchi T; Kojima H; Kawaguchi S; Shimada M; Aso H J Biochem; 2017 Aug; 162(2):103-111. PubMed ID: 28130418 [TBL] [Abstract][Full Text] [Related]
11. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM; Sloan RL; Cordes KS Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Legrum B; Passow H Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878 [TBL] [Abstract][Full Text] [Related]
13. Functions of extracellular lysine residues in the human erythrocyte anion transport protein. Jennings ML; Monaghan R; Douglas SM; Nicknish JS J Gen Physiol; 1985 Nov; 86(5):653-69. PubMed ID: 3934327 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Macara IG; Cantley LC Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699 [TBL] [Abstract][Full Text] [Related]
15. Complex effects of papain on function and inhibitor sensitivity of the red cell anion exchanger AE1 suggest the presence of different transport subsites. St Voswinkel ; Haest CW; Deuticke B J Membr Biol; 2001 Feb; 179(3):205-21. PubMed ID: 11246420 [TBL] [Abstract][Full Text] [Related]
16. Functional roles of carboxyl groups in human red blood cell anion exchange. Jennings ML; Anderson MP; McCormick SJ Soc Gen Physiol Ser; 1988; 43():163-80. PubMed ID: 3077543 [TBL] [Abstract][Full Text] [Related]
17. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. Bjerrum PJ; Wieth JO; Borders CL J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266 [TBL] [Abstract][Full Text] [Related]
18. Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study. Falke JJ; Pace RJ; Chan SI J Biol Chem; 1984 May; 259(10):6472-80. PubMed ID: 6725260 [TBL] [Abstract][Full Text] [Related]
19. Erythrocyte band 3 protein: evidence for multiple membrane-crossing segments in the 17 000-dalton chymotryptic fragment. Jennings ML; Nicknish JS Biochemistry; 1984 Dec; 23(26):6432-6. PubMed ID: 6529560 [TBL] [Abstract][Full Text] [Related]
20. Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Wieth JO; Andersen OS; Brahm J; Bjerrum PJ; Borders CL Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):383-99. PubMed ID: 6130537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]