BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7317414)

  • 1. Evidence for negative cooperativity in human erythrocyte sugar transport.
    Holman GD; Busza AL; Pierce EJ; Rees WD
    Biochim Biophys Acta; 1981 Dec; 649(3):503-14. PubMed ID: 7317414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding requirements for the insulin-sensitive sugar transport system of rat adipocytes.
    Rees WD; Holman GD
    Biochim Biophys Acta; 1981 Aug; 646(2):251-60. PubMed ID: 7028115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An allosteric pore model for sugar transport in human erythrocytes.
    Holman GD
    Biochim Biophys Acta; 1980 Jun; 599(1):202-13. PubMed ID: 7397148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.
    Baker GF; Widdas WF
    J Physiol; 1988 Jan; 395():57-76. PubMed ID: 3411487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system.
    Barnett JE; Holman GD; Chalkley RA; Munday KA
    Biochem J; 1975 Mar; 145(3):417-29. PubMed ID: 1156368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore.
    Bowman RJ; Lwitt DG
    Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells.
    Weiser MB; Razin M; Stein WD
    Biochim Biophys Acta; 1983 Jan; 727(2):379-88. PubMed ID: 6838879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetrical kinetic parameters for 3-O-methyl-D-glucose transport in adipocytes in the presence and in the absence of insulin.
    Taylor LP; Holman GD
    Biochim Biophys Acta; 1981 Apr; 642(2):325-35. PubMed ID: 7025902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monensin stimulates sugar transport in avian erythrocytes.
    Bihler I; Charles P; Sawh PC
    Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of alpha- and beta-D-glucose by the intact human red cell.
    Carruthers A; Melchior DL
    Biochemistry; 1985 Jul; 24(15):4244-50. PubMed ID: 4052394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes.
    Ginsburg H; Ram D
    Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the strongly bound protein fraction on sugar transport in human erythrocyte ghosts.
    Benes I
    Biochim Biophys Acta; 1978 Jul; 511(1):120-4. PubMed ID: 667055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of rapid exchange component in a low-affinity carrier transport.
    LEFEVRE PG; HABICH KI
    J Gen Physiol; 1963 Mar; 46(4):721-31. PubMed ID: 13929247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization and transport of glucose in Olea Europaea cell suspensions.
    Oliveira J; Tavares RM; GerĂ³s H
    Plant Cell Physiol; 2002 Dec; 43(12):1510-7. PubMed ID: 12514248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.