These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7317485)

  • 1. [Role of protonophore activity of oxalacetic acid in inducing Ca2+ yield from mitochondria].
    Gagel'gans AI; Asrarov MI; Kazakov I; Shkinev AV; Mirkhodzhaev UZ
    Biofizika; 1981; 26(6):1004-10. PubMed ID: 7317485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of oxaloacetic acid on hydrogen-calcium metabolism in mitochondria].
    Asrarov MI; Gagel'gans AI; Tashmukhamedov BA
    Biofizika; 1987; 32(3):454-7. PubMed ID: 3620523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Oxaloacetate-dependent calcium transport in rat liver mitochondria].
    Zharova TV; Tiulina OV
    Biokhimiia; 1993 Aug; 58(8):1188-98. PubMed ID: 8399766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nature of endogenous proton conductance of the inner mitochondrial membrane. Role of Ca2+ transport system in proton transfer].
    Zinov'eva MV; Leĭkin IuN; Petushkova NA
    Biokhimiia; 1981 Oct; 46(10):1896-904. PubMed ID: 6171308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Induction of hydrogen ion transport in mitochondrial membranes].
    Sharyshev AA; Novogorodov SA; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(1):52-7. PubMed ID: 7066402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control.
    Vercesi AE
    An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lutein on the transport of Ca2+ across phospholipid bilayer and mitochondrial membrane.
    Chaturvedi VK; Kurup CK
    Biochem Int; 1986 Feb; 12(2):373-7. PubMed ID: 3964291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.
    Beatrice MC; Palmer JW; Pfeiffer DR
    J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox state of pyridine nucleotides, but not glutathione, regulate Ca2+ release by H2O2 from mitochondria of pulmonary smooth muscle.
    Roychoudhury S; Chakraborti T; Ghosh JJ; Ghosh SK; Chakraborti S
    Indian J Biochem Biophys; 1996 Jun; 33(3):218-22. PubMed ID: 8828293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of tenoyltrifluoroacetone on the functioning of mitochondria and other membrane structures].
    Gagel'gans AI; Shkinevv AV; Zamaraeva MV; Krasil'nikov OV; Ternovskiĭ VI
    Biokhimiia; 1980 Dec; 45(12):2165-75. PubMed ID: 7248351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of endogenous fatty acids in Ca2+ release activation from mitochondria.
    Medvedev BI; Severina EP; Gogvadze VG; Chukhlova EA; Evtodienko YuV
    Gen Physiol Biophys; 1985 Dec; 4(6):549-56. PubMed ID: 4085784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of oxaloacetate and beta-hydroxybutyrate on rat liver mitochondrial calcium flow during starvation.
    Lucas M; Solano P; Galván A; Goberna R
    Horm Metab Res; 1981 Aug; 13(8):438-41. PubMed ID: 7327521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of nonselective permeability of the inner membrane in deenergized mitochondria.
    Dedov VN; Demin OV; Chernyak VY; Chernyak BV
    Biochemistry (Mosc); 1999 Jul; 64(7):809-16. PubMed ID: 10424906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of opiate-induced permeability of mitochondrial membranes for potassium ions].
    Chistiakov VV; Gegenava GP
    Biokhimiia; 1980 Mar; 45(3):492-7. PubMed ID: 7378487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane permeability transition.
    Marcocci L; De Marchi U; Salvi M; Milella ZG; Nocera S; Agostinelli E; Mondovi B; Toninello A
    J Membr Biol; 2002 Jul; 188(1):23-31. PubMed ID: 12172644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria and on the viability of hepatoma cells.
    Teplova VV; Kudin AP; Evtodienko YuV
    Membr Cell Biol; 1998; 11(5):641-51. PubMed ID: 9672882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV
    Biochem Biophys Res Commun; 2002 Feb; 291(1):170-5. PubMed ID: 11829479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of the effects of some perminductors on mitochondria and chloroplasts].
    Shol'ts KF; Reznik GI; Mosolova IM; Kotel'nikova AV
    Biokhimiia; 1982 Mar; 47(3):447-54. PubMed ID: 6176281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.