These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7317501)

  • 1. [Spiral waves in heart (theoretical analysis)].
    Grenadier AK; Panfilov AV
    Biofizika; 1981; 26(6):1107-8. PubMed ID: 7317501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Different sensitivities of two mechanisms of excitation waves in heart tissue to anti-arrhythmia agents--blockers of fast sodium currents].
    Grenader AK; Zurabishvili GG
    Biofizika; 1985; 30(1):118-23. PubMed ID: 2579679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry.
    Comtois P; Kneller J; Nattel S
    Europace; 2005 Sep; 7 Suppl 2():10-20. PubMed ID: 16102499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The auricular tissue specialized for conduction: its importance in physiology and antiarrhythmic pharmacotherapy].
    Pastelin G; Cuevas B; Alvarado JL; Méndez R
    Gac Med Mex; 1984; 120(11-12):371-85. PubMed ID: 6152584
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model.
    Kneller J; Kalifa J; Zou R; Zaitsev AV; Warren M; Berenfeld O; Vigmond EJ; Leon LJ; Nattel S; Jalife J
    Circ Res; 2005 Mar; 96(5):e35-47. PubMed ID: 15731458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral wave attachment to millimeter-sized obstacles.
    Lim ZY; Maskara B; Aguel F; Emokpae R; Tung L
    Circulation; 2006 Nov; 114(20):2113-21. PubMed ID: 17088465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ion channels and arrhythmias].
    Borchard U; Hafner D
    Z Kardiol; 2000; 89 Suppl 3():6-12. PubMed ID: 10810780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Sharp increase in refractory period induced by oxidation suppression in Fitz Hugh-Nagumo model. New mechanism of antiarrhythmic drug action].
    Pertsov AM; Khramov RN; Panfilov AV
    Biofizika; 1981; 26(6):1077-81. PubMed ID: 7317492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model systems for the discovery and development of antiarrhythmic drugs.
    Nattel S; Duker G; Carlsson L
    Prog Biophys Mol Biol; 2008; 98(2-3):328-39. PubMed ID: 19038282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study.
    Cimponeriu A; Starmer CF; Bezerianos A
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bradycardic onset of spiral wave re-entry: structural substrates.
    Zemlin CW; Pertsov AM
    Europace; 2007 Nov; 9 Suppl 6():vi59-63. PubMed ID: 17959694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-blockers as antiarrhythmic agents.
    Zicha S; Tsuji Y; Shiroshita-Takeshita A; Nattel S
    Handb Exp Pharmacol; 2006; (171):235-66. PubMed ID: 16610347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cardiac arrhythmias (III). The classification of anti-arrhythmia drugs in the 90s: a focus for the cardiologist].
    Tamargo J; Valenzuela C; Delpón E
    Rev Esp Cardiol; 1993 Mar; 46(3):183-94. PubMed ID: 8387683
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action.
    Aslanidi OV; Bailey A; Biktashev VN; Clayton RH; Holden AV
    Chaos; 2002 Sep; 12(3):843-851. PubMed ID: 12779612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.
    Majumder R; Pandit R; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H1024-35. PubMed ID: 25108011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An emerging antiarrhythmic target: late sodium current.
    Banyasz T; Szentandrássy N; Magyar J; Szabo Z; Nánási PP; Chen-Izu Y; Izu LT
    Curr Pharm Des; 2015; 21(8):1073-90. PubMed ID: 25354179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Refractoriness of cardiac tissue and mechanism of destruction of sources of spiral waves of excitation in the heart].
    Grenader AK; Zurabishvili GG
    Biofizika; 1980; 25(5):893-6. PubMed ID: 7417578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RSD1000: a novel antiarrhythmic agent with increased potency under acidic and high-potassium conditions.
    Yong SL; Xu R; McLarnon JG; Zolotoy AB; Beatch GN; Walker MJ
    J Pharmacol Exp Ther; 1999 Apr; 289(1):236-44. PubMed ID: 10087010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.