These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spatial organizations of catfish retinal neurons. II. Circular stimulus. Chan RY; Naka K J Neurophysiol; 1980 Mar; 43(3):832-50. PubMed ID: 7373359 [TBL] [Abstract][Full Text] [Related]
3. Response dynamics and receptive-field organization of catfish amacrine cells. Sakai HM; Naka K J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468 [TBL] [Abstract][Full Text] [Related]
4. Signal transmission in the catfish retina. II. Transmission to type-N cell. Sakuranaga M; Naka K J Neurophysiol; 1985 Feb; 53(2):390-410. PubMed ID: 2984348 [TBL] [Abstract][Full Text] [Related]
5. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina. Murphy-Baum BL; Taylor WR J Neurosci; 2015 Sep; 35(39):13336-50. PubMed ID: 26424882 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of the ganglion cell response in the catfish and frog retinas. Sakuranaga M; Ando Y; Naka K J Gen Physiol; 1987 Aug; 90(2):229-59. PubMed ID: 3498795 [TBL] [Abstract][Full Text] [Related]
7. Functional organization of catfish retina. Naka K J Neurophysiol; 1977 Jan; 40(1):26-43. PubMed ID: 188998 [TBL] [Abstract][Full Text] [Related]
8. Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles. Ikeda H; Wright MJ J Physiol; 1972 Dec; 227(3):769-800. PubMed ID: 4654257 [TBL] [Abstract][Full Text] [Related]
9. Signal transmission in the catfish retina. IV. Transmission to ganglion cells. Sakai HM; Naka K J Neurophysiol; 1987 Dec; 58(6):1307-28. PubMed ID: 2830370 [TBL] [Abstract][Full Text] [Related]
10. Orientation-sensitive amacrine and ganglion cells in the rabbit retina. Bloomfield SA J Neurophysiol; 1994 May; 71(5):1672-91. PubMed ID: 8064341 [TBL] [Abstract][Full Text] [Related]
11. Morphological and functional identifications of catfish retinal neurons. II. Morphological identification. Naka K; Otsuka T J Neurophysiol; 1975 Jan; 38(1):72-91. PubMed ID: 45935 [TBL] [Abstract][Full Text] [Related]
12. Spatio-temporal visual receptive fields as revealed by spatio-temporal random noise. Hida E; Naka K Z Naturforsch C Biosci; 1982 Oct; 37(10):1048-9. PubMed ID: 7180095 [TBL] [Abstract][Full Text] [Related]
13. Signal transmission in the catfish retina. V. Sensitivity and circuit. Sakai HM; Naka K J Neurophysiol; 1987 Dec; 58(6):1329-50. PubMed ID: 2830371 [TBL] [Abstract][Full Text] [Related]
14. Spatial organization of catfish retinal neurons. I. Single- and random-bar stimulation. Davis GW; Naka K J Neurophysiol; 1980 Mar; 43(3):807-31. PubMed ID: 7373358 [TBL] [Abstract][Full Text] [Related]
15. Processing of color- and noncolor-coded signals in the gourami retina. III. Ganglion cells. Sakai HM; Machuca H; Korenberg MJ; Naka KI J Neurophysiol; 1997 Oct; 78(4):2034-47. PubMed ID: 9325371 [TBL] [Abstract][Full Text] [Related]
16. Processing of color- and noncolor-coded signals in the gourami retina. II. Amacrine cells. Sakai HM; Machuca H; Naka KI J Neurophysiol; 1997 Oct; 78(4):2018-33. PubMed ID: 9325370 [TBL] [Abstract][Full Text] [Related]
17. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. Miller RF; Dacheux RF J Gen Physiol; 1976 Jun; 67(6):639-59. PubMed ID: 932668 [TBL] [Abstract][Full Text] [Related]
18. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. Sakai HM; Naka KI J Neurophysiol; 1990 Jan; 63(1):105-19. PubMed ID: 2153768 [TBL] [Abstract][Full Text] [Related]
19. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. Mastronarde DN J Neurophysiol; 1983 Feb; 49(2):303-24. PubMed ID: 6300340 [TBL] [Abstract][Full Text] [Related]
20. Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina. Chen X; Hsueh HA; Greenberg K; Werblin FS J Neurophysiol; 2010 May; 103(5):2618-32. PubMed ID: 20220071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]