These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7317583)
1. On phenomenological mechanochemical muscle models - I. Long RL; McIntire LV Biorheology; 1981; 18(2):207-22. PubMed ID: 7317583 [No Abstract] [Full Text] [Related]
2. Polyphasic character of ATP hydrolysis in actomyosin system. Strzelecka-Gołaszewska H; Klimaszewska U; Dydyńska M Eur J Biochem; 1979 Nov; 101(2):523-30. PubMed ID: 160315 [No Abstract] [Full Text] [Related]
3. An analysis of the possible source of contractile forces in striated muscle. Cooper A J Theor Biol; 1973 Dec; 42(3):545-62. PubMed ID: 4766752 [No Abstract] [Full Text] [Related]
5. Regulation and kinetics of the actin-myosin-ATP interaction. Adelstein RS; Eisenberg E Annu Rev Biochem; 1980; 49():921-56. PubMed ID: 6447472 [No Abstract] [Full Text] [Related]
6. On phenomenological mechanochemical muscle models - II. Long RL; McIntire LV Biorheology; 1981; 18(2):223-33. PubMed ID: 7317584 [No Abstract] [Full Text] [Related]
7. The effect of adenosine diphosphate on the interaction of actin-myosin-adenosine triphosphate. Szöör A; Kónya L; Csabina S Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):311-7. PubMed ID: 6545638 [TBL] [Abstract][Full Text] [Related]
8. Enzyme kinetics and the mechanism of muscle contraction. Taylor EW; Lymn RW Muscle Biol; 1972; 1():47-69. PubMed ID: 4664960 [No Abstract] [Full Text] [Related]
9. The molecular basis of chemomechanical coupling in muscle and in other biological engines. Oplatka A Biophys Chem; 1991 Dec; 41(3):237-51. PubMed ID: 1777575 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies on the mechanism of regulation of smooth and striated muscle actomyosin. Taylor EW Prog Clin Biol Res; 1987; 245():59-66. PubMed ID: 2960979 [No Abstract] [Full Text] [Related]
13. The elementary steps of the actomyosin ATPase in muscle fibres studied with caged-ATP. Ferenczi MA; Spencer CI Adv Exp Med Biol; 1988; 226():181-8. PubMed ID: 2970206 [TBL] [Abstract][Full Text] [Related]
14. Phosphate release and force generation in skeletal muscle fibers. Hibberd MG; Dantzig JA; Trentham DR; Goldman YE Science; 1985 Jun; 228(4705):1317-9. PubMed ID: 3159090 [TBL] [Abstract][Full Text] [Related]
15. A three-line muscle cross-bridge cycle with strain-dependent ligand releases. Smith D Biophys J; 1995 Apr; 68(4 Suppl):215S. PubMed ID: 7787071 [No Abstract] [Full Text] [Related]
16. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. Marston SB; Taylor EW J Mol Biol; 1980 Jun; 139(4):573-600. PubMed ID: 6447797 [No Abstract] [Full Text] [Related]
17. [Kinetic mechano-chemical model of a muscle with a six-stage cross-bridge cycle]. Tsaturian AK Biofizika; 1991; 36(4):660-8. PubMed ID: 1793752 [TBL] [Abstract][Full Text] [Related]
18. Action of peptide-B from bovine fibrinogen on ATPase activity and superprecipitation of myosin B. Osbahr AJ; Custodio R Am J Physiol; 1975 Feb; 228(2):488-95. PubMed ID: 123418 [TBL] [Abstract][Full Text] [Related]
19. The structure of myosin and its role in energy transduction in muscle. Shriver JW Biochem Cell Biol; 1986 Apr; 64(4):265-76. PubMed ID: 2941036 [TBL] [Abstract][Full Text] [Related]
20. [Effect of eserine on magnesium-activated myofibrillary adenosine triphosphatase and natural and reconstructed actinomyosin in rabbit skeletal muscle fibers]. Kalamkarova MB; Kofman EB; Nankina VP Biofizika; 1981; 26(5):809-13. PubMed ID: 6119117 [No Abstract] [Full Text] [Related] [Next] [New Search]