BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7318483)

  • 1. Hypometabolic brain peptide from vertebrates capable of torpor.
    Swan H; Reinhard FG; Caprio DL; Schatte CL
    Cryobiology; 1981 Dec; 18(6):598-602. PubMed ID: 7318483
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis.
    Wilz M; Heldmaier G
    J Comp Physiol B; 2000 Nov; 170(7):511-21. PubMed ID: 11128441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow wave sleep, shallow torpor and hibernation: homologous states of diminished metabolism and body temperature.
    Berger RJ
    Biol Psychol; 1984 Dec; 19(3-4):305-26. PubMed ID: 6395910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The cardiotropic, hypometabolic and hypothermic activity of peptide fractions from the tissues of hibernating cold-adapted animals].
    Sukhova GS; Ignat'ev DA; Akhremenko AK; Levashova VG; Mikhaleva II; Sviriaev VI; Anufriev AI; Ziganshin RKh; Kramarova LI; Gnutov DIu
    Zh Evol Biokhim Fiziol; 1990; 26(5):623-9. PubMed ID: 2091416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2S induces a suspended animation-like state in mice.
    Blackstone E; Morrison M; Roth MB
    Science; 2005 Apr; 308(5721):518. PubMed ID: 15845845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor.
    Walker JM; Berger RJ
    Prog Brain Res; 1980; 53():255-78. PubMed ID: 7005945
    [No Abstract]   [Full Text] [Related]  

  • 7. [The effect of estivation and hibernation on conditioned defensive reflexes in the suslik Citellus fulvus].
    Nuritdinov EN
    Zh Evol Biokhim Fiziol; 1989; 25(4):559-60. PubMed ID: 2596213
    [No Abstract]   [Full Text] [Related]  

  • 8. [The hypometabolic effect of the blood plasma from a hibernating suslik Citellus undulatus. Neokyotorphin activates cardiac and respiratory activities in the suslik during arousal from hibernation].
    Ignat'ev DA; Sukhova GS; Zagnoĭko VI; Sukhov VP; Sviriaev VI
    Zh Evol Biokhim Fiziol; 1992; 28(4):459-66. PubMed ID: 1455953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation.
    Storey KB; Storey JM
    Q Rev Biol; 1990 Jun; 65(2):145-74. PubMed ID: 2201054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the calorigenic action of noradrenaline in the rat and ground squirrel adapted to different temperatures.
    Petrović VM; Marković-Giaja L
    Experientia; 1973 Oct; 29(10):1295-6. PubMed ID: 4758946
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduction of thyrotropin-releasing hormone concentrations in central nervous system of African lungfish during estivation.
    Kreider MS; Winokur A; Pack AI; Fishman AP
    Gen Comp Endocrinol; 1990 Mar; 77(3):435-41. PubMed ID: 2110919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep and estivation (shallow torpor): continuous processes of energy conservation.
    Walker JM; Garber A; Berger RJ; Heller HC
    Science; 1979 Jun; 204(4397):1098-100. PubMed ID: 221974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypometabolic and hypothermic factors from small intestine of hibernating ground squirrels (Citellus undulatus).
    Kramarova LI; Kolaeva SG; Bronnikov GE; Ignatiev AD; Krasts IV
    Can J Physiol Pharmacol; 1993; 71(3-4):293-6. PubMed ID: 8402394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Continuous biotelemetric recording of the internal temperature of small hibernating reptiles and mammals].
    Ai B; Olivier H; Ambid L; Saint-Girons S
    C R Acad Hebd Seances Acad Sci D; 1975 Feb; 280(8):1015-8. PubMed ID: 809184
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic Flexibility: Hibernation, Torpor, and Estivation.
    Staples JF
    Compr Physiol; 2016 Mar; 6(2):737-71. PubMed ID: 27065167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver.
    Nelson CJ; Otis JP; Martin SL; Carey HV
    Physiol Genomics; 2009 Mar; 37(1):43-51. PubMed ID: 19106184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Low-molecular peptides from tissues of hibernating and cold-adapted animals influence cell proliferation in the Ehrlich ascitic carcinoma].
    Gulevskiĭ AK; Grishchenko VI; Tereshchenko OS; Shcheniavskiĭ II
    Tsitologiia; 2006; 48(1):28-33. PubMed ID: 16568832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the mitochondrial phosphoproteome during mammalian hibernation.
    Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF
    Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimetabolic extract from the brain of the hibernating ground squirrel Citellus tridecemlineatus.
    Swan H; Schätte C
    Science; 1977 Jan; 195(4273):84-5. PubMed ID: 831261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The gallbladder of Rhinolophus in estivation. Points of cytochemistry. Comparison with the period of hibernation].
    TURCHINI JP; CATAYEE G
    C R Seances Soc Biol Fil; 1960; 154():165-6. PubMed ID: 13839874
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.