BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7318490)

  • 21. Metabolomics of the rat lens: a combined LC-MS and NMR study.
    Yanshole VV; Snytnikova OA; Kiryutin AS; Yanshole LV; Sagdeev RZ; Tsentalovich YP
    Exp Eye Res; 2014 Aug; 125():71-8. PubMed ID: 24910091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Longitudinal (T1) relaxation times of phosphorus metabolites in the bovine and rabbit lens.
    Schleich T; Willis JA; Matson GB
    Exp Eye Res; 1984 Oct; 39(4):455-68. PubMed ID: 6499960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution magic angle spinning 1H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure.
    Saether O; Risa O; Cejková J; Krane J; Midelfart A
    Graefes Arch Clin Exp Ophthalmol; 2004 Dec; 242(12):1000-7. PubMed ID: 15490209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 31P NMR studies of the diabetic lens.
    González RG; Miglior S; Von Saltza I; Buckley L; Neuringer LJ; Cheng HM
    Magn Reson Med; 1988 Apr; 6(4):435-44. PubMed ID: 3132582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphatic metabolites of the intact cornea by phosphorus-31 nuclear magnetic resonance.
    Greiner JV; Kopp SJ; Gillette TE; Glonek T
    Invest Ophthalmol Vis Sci; 1983 May; 24(5):535-42. PubMed ID: 6840999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy.
    Fris M; Tessem MB; Saether O; Midelfart A
    Acta Ophthalmol Scand; 2006 Oct; 84(5):684-92. PubMed ID: 16965502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of dexamethasone in the cornea and lens by NMR spectroscopy.
    Midelfart A; Dybdahl A; Krane J
    Graefes Arch Clin Exp Ophthalmol; 1999 May; 237(5):415-23. PubMed ID: 10333109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postnatal biochemical changes in rat lens: an important factor in cataract models.
    Fris M; Midelfart A
    Curr Eye Res; 2007 Feb; 32(2):95-103. PubMed ID: 17364742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS 1H NMR spectroscopy.
    Tessem MB; Midelfart A; Cejková J; Bathen TF
    Ophthalmic Res; 2006; 38(2):105-14. PubMed ID: 16374053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The metabolism of galactose cataracts evaluated by phosphorous-31 nuclear magnetic resonance spectroscopy (2)].
    Igarashi H; Yoshida A; Tanaka K
    Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):3-8. PubMed ID: 1553872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 31P nuclear magnetic resonance and laser spectroscopic analyses of lens transparency during calcium-induced opacification.
    Beaulieu CF; Clark JI
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1339-47. PubMed ID: 2365564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of different metabolites in the rabbit lens by high resolution 1H NMR spectroscopy.
    Midelfart A; Dybdahl A; Gribbestad S
    Curr Eye Res; 1996 Dec; 15(12):1175-81. PubMed ID: 9018432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [1H-NMR study on protein of normal and galactose cataractous rat whole lenses].
    Kaizuka Y
    Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):15-21. PubMed ID: 1553869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: measurements by high resolution MAS 1H NMR spectroscopy.
    Risa Ø; Saether O; Löfgren S; Söderberg PG; Krane J; Midelfart A
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1916-21. PubMed ID: 15161858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic changes in intact crystalline lens metabolism modulated by alkaline earth metals: I. Effects of magnesium.
    Kopp SJ; Glonek T; Greiner JV
    Exp Eye Res; 1983 Mar; 36(3):327-35. PubMed ID: 6832229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):613-24. PubMed ID: 7076407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 31P-nuclear magnetic resonance evidence of an activated hexose-monophosphate shunt in hyperglycemic rat lenses in vivo.
    Szwergold BS; Lal S; Taylor AH; Kappler F; Su B; Brown TR
    Diabetes; 1995 Jul; 44(7):810-5. PubMed ID: 7789649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interspecies comparisons of lens phospholipids.
    Iwata JL; Bardygula-Nonn LG; Glonek T; Greiner JV
    Curr Eye Res; 1995 Oct; 14(10):937-41. PubMed ID: 8549159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intralenticular water interactions with phosphates in the intact crystalline lens.
    Glonek T; Greiner JV
    Ophthalmic Res; 1990; 22(5):302-9. PubMed ID: 2090984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aldose reductase inhibition and the phosphorus-31 profile of the intact diabetic rat lens.
    Tsubota K; Yoshida M; Toda T; Ono M; Kajiwara K; Cheng HM
    Ophthalmic Res; 1993; 25(6):393-9. PubMed ID: 8309679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.