These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7318490)

  • 41. Ex vivo P-31 NMR of lens, cornea, heart, and brain.
    Glonek T; Kopp SJ
    Magn Reson Imaging; 1985; 3(4):359-76. PubMed ID: 3937009
    [No Abstract]   [Full Text] [Related]  

  • 42. Metabolomic composition of normal aged and cataractous human lenses.
    Tsentalovich YP; Verkhovod TD; Yanshole VV; Kiryutin AS; Yanshole LV; Fursova AZh; Stepakov DA; Novoselov VP; Sagdeev RZ
    Exp Eye Res; 2015 May; 134():15-23. PubMed ID: 25773987
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From E.M. microprobe analysis to NMRD studies of the lens.
    Clark JI; Beaulieu CF
    Lens Eye Toxic Res; 1989; 6(4):523-39. PubMed ID: 2562119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorine-19 or phosphorus-31 NMR spectroscopy: a suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs.
    Martino R; Gilard V; Desmoulin F; Malet-Martino M
    J Pharm Biomed Anal; 2005 Aug; 38(5):871-91. PubMed ID: 16087049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 13C-nuclear magnetic resonance studies of sugar cataractogenesis in the single intact rabbit lens.
    González RG; Willis J; Aguayo J; Campbell P; Chylack LT; Schleich T
    Invest Ophthalmol Vis Sci; 1982 Jun; 22(6):808-11. PubMed ID: 7076426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of fructose-3-phosphokinase activity in intact mammalian lenses by 31P NMR spectroscopy.
    Lal S; Szwergold BS; Kappler F; Brown T
    J Biol Chem; 1993 Apr; 268(11):7763-7. PubMed ID: 8385119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles.
    Ingwall JS
    Am J Physiol; 1982 May; 242(5):H729-44. PubMed ID: 7044148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raman microspectroscopy of fixed rabbit and human lenses and lens slices: new potentialities.
    Bot AC; Huizinga A; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Aug; 49(2):161-9. PubMed ID: 2767164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
    Caines GH; Schleich T; Morgan CF; Farnsworth PN
    Biochemistry; 1990 Aug; 29(33):7547-57. PubMed ID: 2271517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulating rat lens glucose metabolism with exogenous substrates.
    Cheng HM; Cheng FY; Tanaka GH; Xiong J; Pfleiderer B
    Exp Eye Res; 1995 Oct; 61(4):479-86. PubMed ID: 8549689
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Detection of sorbitol content in crystalline lens of normal rats and rats with diabetic cataract by 1H-NMR].
    Zhang S; Zhaug Y; Liu X; Liu Q; Zhang M; He Y
    Hua Xi Yi Ke Da Xue Xue Bao; 1990 Jun; 21(2):125-7. PubMed ID: 2391091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Progress toward the establishment of nuclear magnetic resonance measurements as an index of in vivo lens functional integrity.
    Farnsworth PN; Schleich T
    Curr Eye Res; 1985 Mar; 4(3):291-7. PubMed ID: 4017627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract.
    Sakagami K; Igarashi H; Tanaka K; Yoshida A
    Hokkaido Igaku Zasshi; 1999 Nov; 74(6):457-66. PubMed ID: 10642892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of an aldose reductase inhibitor on lens phosphorylcholine under hyperglycemic conditions: biochemical and NMR studies.
    Lou MF; Garadi R; Thomas DM; Mahendroo PP; York BM; Jernigan HM
    Exp Eye Res; 1989 Jan; 48(1):11-24. PubMed ID: 2493385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The further metabolism of sorbitol-3-phosphate and fructose-3-phosphate in the mature rat lens.
    Cheng HM; Cheng FY; Xiong H; Xiong J
    Ophthalmic Res; 1996; 28(1):57-63. PubMed ID: 8726678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorylcholine and phosphorylethanolamine concentrations in the lens.
    Zelenka PS; Jernigan HM
    Exp Eye Res; 1982 Feb; 34(2):209-17. PubMed ID: 7060648
    [No Abstract]   [Full Text] [Related]  

  • 58. NMR & fluorescence studies on human and animal lenses.
    Lerman S
    Lens Eye Toxic Res; 1991; 8(2-3):121-54. PubMed ID: 1911633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase transitions in ocular tissue - NMR and temperature measurements.
    Seiler T; Müller-Stolzenburg N; Wollensak J
    Graefes Arch Clin Exp Ophthalmol; 1983; 221(3):122-5. PubMed ID: 6667860
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.