BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 7318833)

  • 21. Location of the globular region in chicken erythrocyte histone H5.
    Crane-Robinson C; Briand G; Sautière P; Champagne M
    Biochim Biophys Acta; 1977 Aug; 493(2):283-92. PubMed ID: 889872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome.
    Buckle RS; Maman JD; Allan J
    J Mol Biol; 1992 Feb; 223(3):651-9. PubMed ID: 1542112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence indicating proximity in the nucleosome between the histone H4 N termini and the globular domain of histone H1.
    Banères JL; Essalouh L; Jariel-Encontre I; Mesnier D; Garrod S; Parello J
    J Mol Biol; 1994 Oct; 243(1):48-59. PubMed ID: 7932740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential distribution of lysine and arginine residues in the closely related histones H1 and H5. Analysis of a human H1 gene.
    Doenecke D; Tönjes R
    J Mol Biol; 1986 Feb; 187(3):461-4. PubMed ID: 3084796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of protein blotting to study the DNA-binding properties of histone H1 and H1 variants.
    Wright JM; Wiersma PA; Dixon GH
    Eur J Biochem; 1987 Oct; 168(2):281-5. PubMed ID: 3665924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Condensation of DNA by the C-terminal domain of histone H1. A circular dichroism study.
    Morán F; Montero F; Azorín F; Suau P
    Biophys Chem; 1985 Jun; 22(1-2):125-9. PubMed ID: 4027331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinction and similarity in the structure of histones H1 and H5 as indicated by 13C nuclear-magnetic-resonance spectroscopy.
    Shimidzu M; Shindo H; Matsumoto U; Mita K; Zama M
    Eur J Biochem; 1985 May; 148(3):431-6. PubMed ID: 2986962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural studies of chicken erythrocyte histone H5.
    Crane-Robinson C; Dancy SE; Bradbury EM; Garel A; Kovacs AM; Champagne M; Daune M
    Eur J Biochem; 1976 Aug; 67(2):379-88. PubMed ID: 964248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The central tryptic fragment of histones H1 and H5 is a fully compacted domain and is the only folded region in the polypeptide chain. A thermodynamic study.
    Tiktopulo EI; Privalov PL; Odintsova TI; Ermokhina TM; Krasheninnikov IA; Aviles FX; Cary PD; Crane-Robinson C
    Eur J Biochem; 1982 Feb; 122(2):327-31. PubMed ID: 7060579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies.
    Cowman MK; Fasman GD
    Biochemistry; 1980 Feb; 19(3):532-41. PubMed ID: 7356945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of the lysine residues of histones H1 and H5: effects on structure and on the binding to chromatin.
    Jordano J; Barbero JL; Montero F; Palacián E
    Mol Biol Rep; 1985 Apr; 10(3):147-51. PubMed ID: 3929068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Features of the chromatin structure of erythrocytes depending on the properties of lysine-rich histones].
    Kostyleva EI; Selivanova GV; Zalenskaia IA
    Mol Biol (Mosk); 1989; 23(1):73-9. PubMed ID: 2544799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The histone H1 globular region. A possible supersecondary structure from spectroscopic and statistical studies.
    Pepe I; Catasti P; Rauch G; Nizzari M; Nicolini C
    Biochim Biophys Acta; 1990 Oct; 1041(1):14-21. PubMed ID: 2223843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo phosphorylation of histones H1 and H5 in calf thymus and chicken erythrocyte as studied by 31P nuclear magnetic resonance spectroscopy.
    Shimidzu M; Shindo H; Takahashi K; Taniguchi S; Matsumoto U
    J Biochem; 1987 Aug; 102(2):351-8. PubMed ID: 3667574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of linker histones to the core nucleosome.
    Ali Z; Singh N
    J Biol Chem; 1987 Sep; 262(27):12989-93. PubMed ID: 3654599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studies.
    Kaplan LJ; Bauer R; Morrison E; Langan TA; Fasman GD
    J Biol Chem; 1984 Jul; 259(14):8777-85. PubMed ID: 6746623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1.
    Bradbury EM; Chapman GE; Danby SE; Hartman PG; Riches PL
    Eur J Biochem; 1975 Sep; 57(2):521-8. PubMed ID: 1175657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the central globular domain of histone H5 in chromatin structure.
    Chan DC; Biard-Roche J; Gorka C; Girardet JL; Lawrence JJ; Piette LI
    J Biomol Struct Dyn; 1984 Oct; 2(2):319-32. PubMed ID: 6443885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule.
    Hartman PG; Chapman GE; Moss T; Bradbury EM
    Eur J Biochem; 1977 Jul; 77(1):45-51. PubMed ID: 908338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobile histone tails in nucleosomes. Assignments of mobile segments and investigations of their role in chromatin folding.
    Smith RM; Rill RL
    J Biol Chem; 1989 Jun; 264(18):10574-81. PubMed ID: 2732239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.